[1] |
Chang, H., Lim, J., Ha, M.,Kim, V.N., 2014. TAIL-seq: genome-wide determination of poly(A) tail length and 3' end modifications. Mol. Cell 53, 1044-1052.
|
[2] |
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al., 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201-206.
|
[3] |
Hu, L., Liu, S., Peng, Y., Ge, R., Su, R., Senevirathne, C., Harada, B.T., Dai, Q., Wei, J., Zhang, L., et al., 2022. m(6)A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 40, 1210-1219.
|
[4] |
Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B.S., Mesquita, A., Liu, C., Yuan, C.L., et al., 2018. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285-295.
|
[5] |
Kortel, N., Ruckle, C., Zhou, Y., Busch, A., Hoch-Kraft, P., Sutandy, F.X.R., Haase, J., Pradhan, M., Musheev, M., Ostareck, D., et al., 2021. Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Res. 49, e92.
|
[6] |
Liu, X., Wang, H., Zhao, X., Luo, Q., Wang, Q., Tan, K., Wang, Z., Jiang, J., Cui, J., Du, E., et al., 2021. Arginine methylation of METTL14 promotes RNA N(6)-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells. Nat. Commun. 12, 3780.
|
[7] |
Liu, Y., Nie, H., Liu, H.,Lu, F., 2019. Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat. Commun. 10, 5292.
|
[8] |
Liu, Y., Nie, H., Zhang, Y., Lu, F.,Wang, J., 2022a. Comprehensive analysis of mRNA poly(A) tails by PAIso-seq2. Sci. China Life Sci. 65.
|
[9] |
Liu, Y., Zhang, Y., Wang, J.,Lu, F., 2022b. Transcriptome-wide measurement of poly(A) tail length and composition at subnanogram total RNA sensitivity by PAIso-seq. Nat. Protoc. 17, 1980-2007.
|
[10] |
Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E.,Jaffrey, S.R., 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149, 1635-1646.
|
[11] |
Viegas, I.J., de Macedo, J.P., Serra, L., De Niz, M., Temporao, A., Silva Pereira, S., Mirza, A.H., Bergstrom, E., Rodrigues, J.A., Aresta-Branco, F., et al., 2022. N(6)-methyladenosine in poly(A) tails stabilize VSG transcripts. Nature 604, 362-370.
|
[12] |
Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et al., 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117-120.
|
[13] |
Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H.,He, C., 2015. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388-1399.
|
[14] |
Weill, L., Belloc, E., Bava, F.A.,Mendez, R., 2012. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat. Struct. Mol. Biol. 19, 577-585.
|
[15] |
Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., Jiao, F., Liu, H., Yang, P., Tan, L., et al., 2018. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69, 1028-1038 e1026.
|
[16] |
Workman, R.E., Tang, A.D., Tang, P.S., Jain, M., Tyson, J.R., Razaghi, R., Zuzarte, P.C., Gilpatrick, T., Payne, A., Quick, J., et al., 2019. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297-1305.
|
[17] |
Yang, D., Qiao, J., Wang, G., Lan, Y., Li, G., Guo, X., Xi, J., Ye, D., Zhu, S., Chen, W., et al., 2018a. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res. 46, 3906-3920.
|
[18] |
Yang, Y., Hsu, P.J., Chen, Y.S.,Yang, Y.G., 2018b. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28, 616-624.
|
[19] |
Yu, S.,Kim, V.N., 2020. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. 21, 542-556.
|
[20] |
Zhao, X., Yang, Y., Sun, B.F., Shi, Y., Yang, X., Xiao, W., Hao, Y.J., Ping, X.L., Chen, Y.S., Wang, W.J., et al., 2014. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24, 1403-1419.
|