5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 3
Mar.  2023
Turn off MathJax
Article Contents

Associations of autozygosity with economic important traits in a cross of Eurasian pigs

doi: 10.1016/j.jgg.2022.09.002
Funds:

This work was supported by the National Key Research and Development Program of China (2021YFF1000602), the Chinese Academy of Sciences (XDA24010107), the National Natural Science Foundation of China (31750110480), the Animal Branch of the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research Infrastructure Funding), and the Spring City Plan: the High-level Talent Promotion and Training Project of Kunming (2022SCP001).

  • Received Date: 2022-06-21
  • Accepted Date: 2022-09-16
  • Rev Recd Date: 2022-08-30
  • Publish Date: 2022-09-22
  • loading
  • [1]
    Alkuraya, F.S., 2013. The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum. Genet. 132(11), 1197-1211.
    [2]
    Ceballos, F.C., Joshi, P.K., Clark, D.W., Ramsay, M., Wilson, J.F., 2018. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19(4), 220-234.
    [3]
    Charlesworth, D., Willis, J.H., 2009. The genetics of inbreeding depression. Nat. Rev. Genet. 10(11), 783-796.
    [4]
    Ganteil, A., Rodriguez-Ramilo, S.T., Ligonesche, B., Larzul, C., 2020. Characterization of autozygosity in pigs in three-way crossbreeding. Front. Genet. 11, 584556.
    [5]
    Gong, H., Xiao, S., Li, W., Huang, T., Huang, X., Yan, G., Huang, Y., Qiu, H., Jiang, K., Wang, X., et al., 2019. Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. J. Anim. Breed. Genet. 136(1), 3-14.
    [6]
    Howard, J.T., Tiezzi, F., Huang, Y., Gray, K.A., Maltecca, C., 2016. Characterization and management of long runs of homozygosity in parental nucleus lines and their associated crossbred progeny. Genet. Sel. Evol. 48(1), 91.
    [7]
    Ji, J., Zhou, L., Huang, Y., Zheng, M., Liu, X., Zhang, Y., Huang, C., Peng, S., Zeng, Q., Zhong, L., et al., 2018. A whole-genome sequence based association study on pork eating quality traits and cooking loss in a specially designed heterogeneous F6 pig population. Meat Sci. 146, 160-167.
    [8]
    Kitazawa, T., Kaiya, H., 2021. Motilin comparative study: structure, distribution, receptors, and gastrointestinal motility. Front. Endocrinol. 12, 700884.
    [9]
    McQuillan, R., Leutenegger, A.L., Abdel-Rahman, R., Franklin, C.S., Pericic, M., Barac-Lauc, L., Smolej-Narancic, N., Janicijevic, B., Polasek, O., Tenesa, A., et al., 2008. Runs of homozygosity in European populations. Am. J. Hum. Genet. 83(3), 359-372.
    [10]
    Riveros-McKay, F., Mistry, V., Bounds, R., Hendricks, A., Keogh, J.M., Thomas, H., Henning, E., Corbin, L.J., O'Rahilly, S., Zeggini, E., et al., 2019. Genetic architecture of human thinness compared to severe obesity. PLoS Genet. 15(1), e1007603.
    [11]
    Robic, A., Larzul, C., Grindflek, E., Chevillon, P., Hofer, A., Feve, K., Iannuccelli, N., Milan, D., Prunier, A., Riquet, J., 2012. Molecular characterization of the porcine TEAD3 (TEF-5) gene: examination of a promoter mutation as the causal mutation of a quantitative trait loci affecting the androstenone level in boar fat. J. Anim. Breed. Genet. 129(4), 325-335.
    [12]
    Schiavo, G., Bovo, S., Munoz, M., Ribani, A., Alves, E., Araujo, J.P., Bozzi, R., Candek-Potokar, M., Charneca, R., Fernandez, A.I., et al., 2021. Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds. Anim. Genet. 52(2), 155-170.
    [13]
    Shi, L., Wang, L., Liu, J., Deng, T., Yan, H., Zhang, L., Liu, X., Gao, H., Hou, X., Wang, L., et al., 2020. Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population. J. Anim. Sci. Biotechnol. 11, 46.
    [14]
    Tao, L., He, X.Y., Wang, F.Y., Pan, L.X., Wang, X.Y., Gan, S.Q., Di, R., Chu, M.X., 2021. Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Anim. Genet. 52(4), 545-549.
    [15]
    Wang, L., Zhang, L., Yan, H., Liu, X., Li, N., Liang, J., Pu, L., Zhang, Y., Shi, H., Zhao, K., et al., 2014. Genome-wide association studies identify the loci for 5 exterior traits in a Large White×Minzhu pig population. PLoS One 9(8), e103766.
    [16]
    Xie, H.B., Wang, L.G., Fan, C.Y., Zhang, L.C., Adeola, A.C., Yin, X., Zeng, Z.B., Wang, L.X., Zhang, Y.P., 2021. Genetic architecture underlying nascent speciation-the evolution of Eurasian pigs under domestication. Mol. Biol. Evol. 38(9), 3556-3566.
    [17]
    Yang, B., Cui, L., Perez-Enciso, M., Traspov, A., Crooijmans, R., Zinovieva, N., Schook, L.B., Archibald, A., Gatphayak, K., Knorr, C., et al., 2017. Genome-wide SNP data unveils the globalization of domesticated pigs. Genet. Sel. Evol. 49(1), 71.
    [18]
    Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M., Price, A.L., 2014. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46(2), 100-106.
    [19]
    Yang, R., Guo, X., Zhu, D., Tan, C., Bian, C., Ren, J., Huang, Z., Zhao, Y., Cai, G., Liu, D., et al., 2021. Accelerated deciphering of the genetic architecture of agricultural economic traits in pigs using a low-coverage whole-genome sequencing strategy. GigaScience 10(7), giab048.
    [20]
    Zhang, L.C., Li, N., Liu, X., Liang, J., Yan, H., Zhao, K.B., Pu, L., Shi, H.B., Zhang, Y.B., Wang, L.G., et al., 2014. A genome-wide association study of limb bone length using a Large White×Minzhu intercross population. Genet. Sel. Evol. 46(1), 56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (593) PDF downloads (32) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return