[1] |
Alkuraya, F.S., 2013. The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum. Genet. 132(11), 1197-1211.
|
[2] |
Ceballos, F.C., Joshi, P.K., Clark, D.W., Ramsay, M., Wilson, J.F., 2018. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19(4), 220-234.
|
[3] |
Charlesworth, D., Willis, J.H., 2009. The genetics of inbreeding depression. Nat. Rev. Genet. 10(11), 783-796.
|
[4] |
Ganteil, A., Rodriguez-Ramilo, S.T., Ligonesche, B., Larzul, C., 2020. Characterization of autozygosity in pigs in three-way crossbreeding. Front. Genet. 11, 584556.
|
[5] |
Gong, H., Xiao, S., Li, W., Huang, T., Huang, X., Yan, G., Huang, Y., Qiu, H., Jiang, K., Wang, X., et al., 2019. Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. J. Anim. Breed. Genet. 136(1), 3-14.
|
[6] |
Howard, J.T., Tiezzi, F., Huang, Y., Gray, K.A., Maltecca, C., 2016. Characterization and management of long runs of homozygosity in parental nucleus lines and their associated crossbred progeny. Genet. Sel. Evol. 48(1), 91.
|
[7] |
Ji, J., Zhou, L., Huang, Y., Zheng, M., Liu, X., Zhang, Y., Huang, C., Peng, S., Zeng, Q., Zhong, L., et al., 2018. A whole-genome sequence based association study on pork eating quality traits and cooking loss in a specially designed heterogeneous F6 pig population. Meat Sci. 146, 160-167.
|
[8] |
Kitazawa, T., Kaiya, H., 2021. Motilin comparative study: structure, distribution, receptors, and gastrointestinal motility. Front. Endocrinol. 12, 700884.
|
[9] |
McQuillan, R., Leutenegger, A.L., Abdel-Rahman, R., Franklin, C.S., Pericic, M., Barac-Lauc, L., Smolej-Narancic, N., Janicijevic, B., Polasek, O., Tenesa, A., et al., 2008. Runs of homozygosity in European populations. Am. J. Hum. Genet. 83(3), 359-372.
|
[10] |
Riveros-McKay, F., Mistry, V., Bounds, R., Hendricks, A., Keogh, J.M., Thomas, H., Henning, E., Corbin, L.J., O'Rahilly, S., Zeggini, E., et al., 2019. Genetic architecture of human thinness compared to severe obesity. PLoS Genet. 15(1), e1007603.
|
[11] |
Robic, A., Larzul, C., Grindflek, E., Chevillon, P., Hofer, A., Feve, K., Iannuccelli, N., Milan, D., Prunier, A., Riquet, J., 2012. Molecular characterization of the porcine TEAD3 (TEF-5) gene: examination of a promoter mutation as the causal mutation of a quantitative trait loci affecting the androstenone level in boar fat. J. Anim. Breed. Genet. 129(4), 325-335.
|
[12] |
Schiavo, G., Bovo, S., Munoz, M., Ribani, A., Alves, E., Araujo, J.P., Bozzi, R., Candek-Potokar, M., Charneca, R., Fernandez, A.I., et al., 2021. Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds. Anim. Genet. 52(2), 155-170.
|
[13] |
Shi, L., Wang, L., Liu, J., Deng, T., Yan, H., Zhang, L., Liu, X., Gao, H., Hou, X., Wang, L., et al., 2020. Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population. J. Anim. Sci. Biotechnol. 11, 46.
|
[14] |
Tao, L., He, X.Y., Wang, F.Y., Pan, L.X., Wang, X.Y., Gan, S.Q., Di, R., Chu, M.X., 2021. Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Anim. Genet. 52(4), 545-549.
|
[15] |
Wang, L., Zhang, L., Yan, H., Liu, X., Li, N., Liang, J., Pu, L., Zhang, Y., Shi, H., Zhao, K., et al., 2014. Genome-wide association studies identify the loci for 5 exterior traits in a Large White×Minzhu pig population. PLoS One 9(8), e103766.
|
[16] |
Xie, H.B., Wang, L.G., Fan, C.Y., Zhang, L.C., Adeola, A.C., Yin, X., Zeng, Z.B., Wang, L.X., Zhang, Y.P., 2021. Genetic architecture underlying nascent speciation-the evolution of Eurasian pigs under domestication. Mol. Biol. Evol. 38(9), 3556-3566.
|
[17] |
Yang, B., Cui, L., Perez-Enciso, M., Traspov, A., Crooijmans, R., Zinovieva, N., Schook, L.B., Archibald, A., Gatphayak, K., Knorr, C., et al., 2017. Genome-wide SNP data unveils the globalization of domesticated pigs. Genet. Sel. Evol. 49(1), 71.
|
[18] |
Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M., Price, A.L., 2014. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46(2), 100-106.
|
[19] |
Yang, R., Guo, X., Zhu, D., Tan, C., Bian, C., Ren, J., Huang, Z., Zhao, Y., Cai, G., Liu, D., et al., 2021. Accelerated deciphering of the genetic architecture of agricultural economic traits in pigs using a low-coverage whole-genome sequencing strategy. GigaScience 10(7), giab048.
|
[20] |
Zhang, L.C., Li, N., Liu, X., Liang, J., Yan, H., Zhao, K.B., Pu, L., Shi, H.B., Zhang, Y.B., Wang, L.G., et al., 2014. A genome-wide association study of limb bone length using a Large White×Minzhu intercross population. Genet. Sel. Evol. 46(1), 56.
|