5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 3
Mar.  2023
Turn off MathJax
Article Contents

A REF6-dependent H3K27me3-depleted state facilitates gene activation during germination in Arabidopsis

doi: 10.1016/j.jgg.2022.09.001
Funds:

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, XDA24020303), the National Key R&D Program of China (2019YFA0903903), and the National Natural Science Foundation of China (31970527, 32170545, and 32150610472). We thank Dr. Xiaofeng Cao for kindly providing seeds, Drs. Xiaofeng Cao and Mike Borg for critical reading of the manuscript and valuable suggestions.

  • Received Date: 2022-09-07
  • Accepted Date: 2022-09-07
  • Publish Date: 2022-09-13
  • Seed germination is a critical developmental switch from a quiescent state to active growth, which involves extensive changes in metabolism, gene expression, and cellular identity. However, our understanding of epigenetic and transcriptional reprogramming during this process is limited. The histone H3 lysine 27 trimethylation (H3K27me3) plays a key role in regulating gene repression and cell fate specification. Here, we profile H3K27me3 dynamics and dissect the function of H3K27 demethylation during germination in Arabidopsis. Our temporal genome-wide profiling of H3K27me3 and transcription reveals delayed H3K27me3 reprogramming compared with transcriptomic changes during germination, with H3K27me3 changes mainly occurring when the embryo is entering into vegetative development. RELATIVE OF EARLY FLOWERING 6 (REF6)-mediated H3K27 demethylation is necessary for robust germination but does not significantly contribute to H3K27me3 dynamics during germination, but rather stably establishes an H3K27me3-depleted state that facilitates the activation of hormone-related and expansin-coding genes important for germination. We also show that the REF6 chromatin occupancy is gradually established during germination to counteract increased Polycomb repressive complex 2 (PRC2). Our study provides key insights into the H3K27me3 dynamics during germination and suggests the function of H3K27me3 in facilitating cell fate switch. Furthermore, we reveal the importance of H3K27 demethylation-established transcriptional competence in gene activation during germination and likely other developmental processes.
  • loading
  • [1]
    Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169.
    [2]
    Antunez-Sanchez, J., Naish, M., Ramirez-Prado, J.S., Ohno, S., Huang, Y., Dawson, A., Opassathian, K., Manza-Mianza, D., Ariel, F., Raynaud, C., et al., 2020. A new role for histone demethylases in the maintenance of plant genome integrity. eLife 9, e58533.
    [3]
    Barroco, R.M., Van Poucke, K., Bergervoet, J.H.W., De Veylder, L., Groot, S.P.C., Inze, D., Engler, G., 2005. The role of the cell cycle machinery in resumption of postembryonic development. Plant Physiol. 137, 127-140.
    [4]
    Bethke, P.C., Libourel, I.G., Aoyama, N., Chung, Y.Y., Still, D.W., Jones, R.L., 2007. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol. 143, 1173-1188.
    [5]
    Borg, M., Jacob, Y., Susaki, D., LeBlanc, C., Buendia, D., Axelsson, E., Kawashima, T., Voigt, P., Boavida, L., Becker, J., et al., 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat. Cell Biol. 22, 621-629.
    [6]
    Bouyer, D., Roudier, F., Heese, M., Andersen, E.D., Gey, D., Nowack, M.K., Goodrich, J., Renou, J.P., Grini, P.E., Colot, V., et al., 2011. Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. PLoS Genet. 7, e1002014.
    [7]
    Brady, S.M., Sarkar, S.F., Bonetta, D., McCourt, P., 2003. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 34, 67-75.
    [8]
    Chanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y.H., Sung, Z.R., Goodrich, J., 2004. Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development 131, 5263-5276.
    [9]
    Chen, F., Bradford, K.J., 2000. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 124, 1265-1274.
    [10]
    Chen, F., Dahal, P., Bradford, K.J., 2001. Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol. 127, 928-936.
    [11]
    Chen, H., Tong, J., Fu, W., Liang, Z., Ruan, J., Yu, Y., Song, X., Yuan, L., Xiao, L., Liu, J., et al., 2020a. The H3K27me3 Demethylase RELATIVE OF EARLY FLOWERING6 Suppresses Seed Dormancy by Inducing Abscisic Acid Catabolism. Plant Physiol. 184, 1969-1978.
    [12]
    Chen, N., Veerappan, V., Abdelmageed, H., Kang, M., Allen, R.D., 2018a. HSI2/VAL1 Silences AGL15 to Regulate the Developmental Transition from Seed Maturation to Vegetative Growth in Arabidopsis. Plant Cell 30, 600-619.
    [13]
    Chen, N., Wang, H., Abdelmageed, H., Veerappan, V., Tadege, M., Allen, R.D., 2020b. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. New Phytol. 227, 840-856.
    [14]
    Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018b. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884-890.
    [15]
    Coleman, R.T., Struhl, G., 2017. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356, eaai8236.
    [16]
    Comai, L., Harada, J.J., 1990. Transcriptional Activities in Dry Seed Nuclei Indicate the Timing of the Transition from Embryogeny to Germination. Proc. Natl. Acad. Sci. U. S. A. 87, 2671-2674.
    [17]
    Corbineau, F., Xia, Q., Bailly, C., El-Maarouf-Bouteau, H., 2014. Ethylene, a key factor in the regulation of seed dormancy. Front. Plant Sci. 5, 539.
    [18]
    Cosgrove, D.J., 2015. Plant expansins: diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 25, 162-172.
    [19]
    Crevillen, P., Yang, H., Cui, X., Greeff, C., Trick, M., Qiu, Q., Cao, X., Dean, C., 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515, 587-590.
    [20]
    Cui, X., Lu, F., Qiu, Q., Zhou, B., Gu, L., Zhang, S., Kang, Y., Cui, X., Ma, X., Yao, Q., et al., 2016. REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nat. Genet. 48, 694-699.
    [21]
    Debeaujon, I., Koornneef, M., 2000. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol. 122, 415-424.
    [22]
    Debeaujon, I., Leon-Kloosterziel, K.M., Koornneef, M., 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122, 403-414.
    [23]
    Finkelstein, R., Reeves, W., Ariizumi, T., Steber, C., 2008. Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 59, 387-415.
    [24]
    Gan, E.S., Xu, Y., Wong, J.Y., Goh, J.G., Sun, B., Wee, W.Y., Huang, J., Ito, T., 2014. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat. Commun. 5, 5098.
    [25]
    Grappin, P., Bouinot, D., Sotta, B., Miginiac, E., Jullien, M., 2000. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210, 279-285.
    [26]
    Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A., Gagliano, W.B., 1998. Maternal control of embryogenesis by medea, a Polycomb group gene in Arabidopsis. Science 280, 446-450.
    [27]
    Gu, X., Xu, T., He, Y., 2014. A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana. Mol. Plant 7, 977-988.
    [28]
    Hawkins, R.D., Hon, G.C., Lee, L.K., Ngo, Q., Lister, R., Pelizzola, M., Edsall, L.E., Kuan, S., Luu, Y., Klugman, S., et al., 2010. Distinct Epigenomic Landscapes of Pluripotent and Lineage-Committed Human Cells. Cell Stem Cell 6, 479-491.
    [29]
    He, J., Duan, Y., Hua, D., Fan, G., Wang, L., Liu, Y., Chen, Z., Han, L., Qu, L.J., Gong, Z., 2012. DEXH Box RNA Helicase-Mediated Mitochondrial Reactive Oxygen Species Production in Arabidopsis Mediates Crosstalk between Abscisic Acid and Auxin Signaling. Plant Cell 24, 1815-1833.
    [30]
    He, K., Mei, H., Zhu, J., Qiu, Q., Cao, X., Deng, X., 2022. The histone H3K27 demethylase REF6/JMJ12 promotes thermomorphogenesis in Arabidopsis. Natl. Sci. Rev. 9, nwab213.
    [31]
    Hepworth, J., Dean, C., 2015. Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation. Plant Physiol. 168, 1237-1245.
    [32]
    Hosogane, M., Funayama, R., Shirota, M., Nakayama, K., 2016. Lack of Transcription Triggers H3K27me3 Accumulation in the Gene Body. Cell Rep. 16, 696-706.
    [33]
    Hou, X., Zhou, J., Liu, C., Liu, L., Shen, L., Yu, H., 2014. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat. Commun. 5, 4601.
    [34]
    Hsueh, Y.L., Lou, C.H., 1947. Effects of 2,4-D on Seed Germination and Respiration. Science 105, 283-285.
    [35]
    Huang, D.W., Sherman, B.T., Lempicki, R.A., 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.
    [36]
    Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., Coupland, G., 2016. Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Dev. Cell 37, 254-266.
    [37]
    Ikeuchi, M., Iwase, A., Rymen, B., Harashima, H., Shibata, M., Ohnuma, M., Breuer, C., Morao, A.K., de Lucas, M., De Veylder, L., et al., 2015. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat. Plants 1, 15089.
    [38]
    Jiang, D., Berger, F., 2017. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science 357, 1146-1149.
    [39]
    Jiang, D., Wang, Y., Wang, Y., He, Y., 2008. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One 3, e3404.
    [40]
    Jurgens, G., 1985. A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 316, 153-155.
    [41]
    Karssen, C.M., Brinkhorst-van der Swan, D.L., Breekland, A.E., Koornneef, M., 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158-165.
    [42]
    Katz, A., Oliva, M., Mosquna, A., Hakim, O., Ohad, N., 2004. FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 37, 707-719.
    [43]
    Keyzor, C., Mermaz, B., Trigazis, E., Jo, S.Y., Song, J., 2021. Histone Demethylases ELF6 and JMJ13 Antagonistically Regulate Self-Fertility in Arabidopsis. Front. Plant Sci. 12, 640135.
    [44]
    Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907-915.
    [45]
    Kim, D.H., Doyle, M.R., Sung, S., Amasino, R.M., 2009. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25, 277-299.
    [46]
    Lafos, M., Kroll, P., Hohenstatt, M.L., Thorpe, F.L., Clarenz, O., Schubert, D., 2011. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet. 7, e1002040.
    [47]
    Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
    [48]
    Lee, K.P., Piskurewicz, U., Tureckova, V., Strnad, M., Lopez-Molina, L., 2010. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc. Natl. Acad. Sci. U. S. A. 107, 19108-19113.
    [49]
    Lee, L.R., Wengier, D.L., Bergmann, D.C., 2019. Cell-type-specific transcriptome and histone modification dynamics during cellular reprogramming in the Arabidopsis stomatal lineage. Proc. Natl. Acad. Sci. U. S. A. 116, 21914-21924.
    [50]
    Li, C., Gu, L., Gao, L., Chen, C., Wei, C.Q., Qiu, Q., Chien, C.W., Wang, S., Jiang, L., Ai, L.F., et al., 2016. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687-693.
    [51]
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Proc, G.P.D., 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.
    [52]
    Li, Z., Ou, Y., Zhang, Z., Li, J., He, Y., 2018. Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis. Mol. Plant 11, 1135-1146.
    [53]
    Liu, C., Lu, F., Cui, X., Cao, X., 2010. Histone methylation in higher plants. Annu. Rev. Plant Biol. 61, 395-420.
    [54]
    Liu, P.P., Montgomery, T.A., Fahlgren, N., Kasschau, K.D., Nonogaki, H., Carrington, J.C., 2007a. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 52, 133-146.
    [55]
    Liu, X., Kim, Y.J., Muller, R., Yumul, R.E., Liu, C., Pan, Y., Cao, X., Goodrich, J., Chen, X., 2011. AGAMOUS Terminates Floral Stem Cell Maintenance in Arabidopsis by Directly Repressing WUSCHEL through Recruitment of Polycomb Group Proteins. Plant Cell 23, 3654-3670.
    [56]
    Liu, Y., Koornneef, M., Soppe, W.J., 2007b. The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19, 433-444.
    [57]
    Lorkovic, Z.J., Park, C., Goiser, M., Jiang, D., Kurzbauer, M.T., Schlogelhofer, P., Berger, F., 2017. Compartmentalization of DNA Damage Response between Heterochromatin and Euchromatin Is Mediated by Distinct H2A Histone Variants. Curr. Biol. 27, 1192-1199.
    [58]
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
    [59]
    Lu, F., Cui, X., Zhang, S., Jenuwein, T., Cao, X., 2011. Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat. Genet. 43, 715-719.
    [60]
    Luo, X., He, Y., 2020. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. J. Integr. Plant Biol. 62, 104-117.
    [61]
    Molitor, A.M., Bu, Z., Yu, Y., Shen, W.H., 2014. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet. 10, e1004091.
    [62]
    Mozgova, I., Hennig, L., 2015. The Polycomb Group Protein Regulatory Network. Annu. Rev. Plant Biol. 66, 269-296.
    [63]
    Mozgova, I., Munoz-Viana, R., Hennig, L., 2017. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet. 13, e1006562.
    [64]
    Nee, G., Xiang, Y., Soppe, W.J.J., 2017. The release of dormancy, a wake-up call for seeds to germinate. Curr. Opin. Plant Biol. 35, 8-14.
    [65]
    Noh, B., Lee, S.H., Kim, H.J., Yi, G., Shin, E.A., Lee, M., Jung, K.J., Doyle, M.R., Amasino, R.M., Noh, Y.S., 2004. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16, 2601-2613.
    [66]
    Nonogaki, H., 2014. Seed dormancy and germination-emerging mechanisms and new hypotheses. Front. Plant Sci. 5, 233.
    [67]
    Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., Yamaguchi, S., 2003. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15, 1591-1604.
    [68]
    Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T., Nambara, E., 2006. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 141, 97-107.
    [69]
    Piskurewicz, U., Iwasaki, M., Susaki, D., Megies, C., Kinoshita, T., Lopez-Molina, L., 2016. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana. eLife 5, e19573.
    [70]
    Qiu, Q., Mei, H., Deng, X., He, K., Wu, B., Yao, Q., Zhang, J., Lu, F., Ma, J., Cao, X., 2019. DNA methylation repels targeting of Arabidopsis REF6. Nat. Commun. 10, 2063.
    [71]
    Ramirez, F., Dundar, F., Diehl, S., Gruning, B.A., Manke, T., 2014. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187-W191.
    [72]
    Riising, E.M., Comet, I., Leblanc, B., Wu, X., Johansen, J.V., Helin, K., 2014. Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide. Mol. Cell 55, 347-360.
    [73]
    Sato, H., Santos-Gonzalez, J., Kohler, C., 2021. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife 10, e64593.
    [74]
    Schneider, A., Aghamirzaie, D., Elmarakeby, H., Poudel, A.N., Koo, A.J., Heath, L.S., Grene, R., Collakova, E., 2016. Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos. Plant J. 85, 305-319.
    [75]
    Smaczniak, C., Immink, R.G.H., Muino, J.M., Blanvillain, R., Busscher, M., Busscher-Lange, J., Dinh, Q.D., Liu, S.J., Westphal, A.H., Boeren, S., et al., 2012. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl. Acad. Sci. U. S. A. 109, 1560-1565.
    [76]
    Steber, C.M., McCourt, P., 2001. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 125, 763-769.
    [77]
    Sun, B., Looi, L.S., Guo, S., He, Z., Gan, E.S., Huang, J., Xu, Y., Wee, W.Y., Ito, T., 2014. Timing Mechanism Dependent on Cell Division Is Invoked by Polycomb Eviction in Plant Stem Cells. Science 343, 1248559.
    [78]
    Thorvaldsdottir, H., Robinson, J.T., Mesirov, J.P., 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14, 178-192.
    [79]
    van Zanten, M., Koini, M.A., Geyer, R., Liu, Y., Brambilla, V., Bartels, D., Koornneef, M., Fransz, P., Soppe, W.J.J., 2011. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc. Natl. Acad. Sci. U. S. A. 108, 20219-20224.
    [80]
    van Zanten, M., Zoll, C., Wang, Z., Philipp, C., Carles, A., Li, Y., Kornet, N.G., Liu, Y., Soppe, W.J.J., 2014. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds. Plant J. 80, 475-488.
    [81]
    Wang, X., Gao, J., Gao, S., Li, Z., Kuai, B., Ren, G., 2019a. REF6 promotes lateral root formation through de-repression of PIN1/3/7 genes. J. Integr. Plant Biol. 61, 383-387.
    [82]
    Wang, X., Gao, J., Gao, S., Song, Y., Yang, Z., Kuai, B., 2019b. The H3K27me3 demethylase REF6 promotes leaf senescence through directly activating major senescence regulatory and functional genes in Arabidopsis. PLoS Genet. 15, e1008068.
    [83]
    Wang, Z., Chen, F., Li, X., Cao, H., Ding, M., Zhang, C., Zuo, J., Xu, C., Xu, J., Deng, X., et al., 2016. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat. Commun. 7,13412.
    [84]
    Wiles, E.T., Selker, E.U., 2017. H3K27 methylation: a promiscuous repressive chromatin mark. Curr. Opin. Genet. Dev. 43, 31-37.
    [85]
    Xue, M., Zhang, H., Zhao, F., Zhao, T., Li, H., Jiang, D., 2021. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. Mol. Plant 14, 1799-1813.
    [86]
    Yan, A., Wu, M., Yan, L., Hu, R., Ali, I., Gan, Y., 2014. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS One 9, e85208.
    [87]
    Yan, W., Chen, D., Smaczniak, C., Engelhorn, J., Liu, H., Yang, W., Graf, A., Carles, C.C., Zhou, D.X., Kaufmann, K., 2018. Dynamic and spatial restriction of Polycomb activity by plant histone demethylases. Nat. Plants 4, 681-689.
    [88]
    Yu, X., Li, L., Li, L., Guo, M., Chory, J., Yin, Y., 2008. Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 105, 7618-7623.
    [89]
    Zhang, H., Li, X., Song, R., Zhan, Z., Zhao, F., Li, Z., Jiang, D., 2022. Cap-binding complex assists RNA Polymerase II transcription in plant salt stress response. Plant Cell Environ. 45, 2780-2793.
    [90]
    Zhang, H., Zhang, F., Yu, Y., Feng, L., Jia, J., Liu, B., Li, B., Guo, H., Zhai, J., 2020. A Comprehensive Online Database for Exploring similar to 20,000 Public Arabidopsis RNA-Seq Libraries. Mol. Plant 13, 1231-1233.
    [91]
    Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J., Jacobsen, S.E., 2007. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129.
    [92]
    Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al., 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.
    [93]
    Zhao, F., Zhang, H., Zhao, T., Li, Z., Jiang, D., 2021. The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis. Plant Physiol. 186, 2051-2063.
    [94]
    Zhao, M., Yang, S., Liu, X., Wu, K., 2015. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front. Plant Sci. 6, 159.
    [95]
    Zhao, T., Zhan, Z., Jiang, D., 2019. Histone modifications and their regulatory roles in plant development and environmental memory. J. Genet. Genomics 46, 467-476.
    [96]
    Zheng, J., Chen, F., Wang, Z., Cao, H., Li, X., Deng, X., Soppe, W.J.J., Li, Y., Liu, Y., 2012. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol. 193, 605-616.
    [97]
    Zheng, S., Hu, H., Ren, H., Yang, Z., Qiu, Q., Qi, W., Liu, X., Chen, X., Cui, X., Li, S., et al., 2019. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor. Nat. Commun. 10, 1303.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (316) PDF downloads (68) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return