5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 1
Jan.  2023
Turn off MathJax
Article Contents

Chemotherapy suppresses SHH gene expression via a specific enhancer

doi: 10.1016/j.jgg.2022.08.002
Funds:

We thank Mr. Qingxiang Gao, and Ms. Qiaoxue Zhao for technical help. This work is supported by the National Natural Science Foundation of China (31871468) and a stable supporting program from the Shenzhen Science and Technology Innovation Commission (20200808172413001) to ZY.

  • Received Date: 2021-12-06
  • Accepted Date: 2022-08-16
  • Rev Recd Date: 2022-08-12
  • Publish Date: 2023-01-28
  • Sonic hedgehog (SHH) signaling is a key regulator of embryonic development and tissue homeostasis that is involved in gastrointestinal (GI) cancer progression. Regulation of SHH gene expression is a paradigm of long-range enhancer function. Using the classical chemotherapy drug 5-fluorouracil (5FU) as an example, here we show that SHH gene expression is suppressed by chemotherapy. SHH is downstream of immediate early genes (IEGs), including Early growth response 1 (Egr1). A specific 139 kb upstream enhancer is responsible for its down-regulation. Knocking down EGR1 expression or blocking its binding to this enhancer renders SHH unresponsive to chemotherapy. We further demonstrate that down-regulation of SHH expression does not depend on 5FU's impact on nucleotide metabolism or DNA damage; rather, a sustained oxidative stress response mediates this rapid suppression. This enhancer is present in a wide range of tumors and normal tissues, thus providing a target for cancer chemotherapy and its adverse effects on normal tissues. We propose that SHH is a stress-responsive gene downstream of IEGs, and that traditional chemotherapy targets a specific enhancer to suppress its expression.
  • loading
  • Ajani, J.A., Javle, M., Eng, C., Fogelman, D., Smith, J., Anderson, B., Zhang, C., Iizuka, K., 2020. Phase I study of DFP-11207, a novel oral fluoropyrimidine with reasonable AUC and low Cmax and improved tolerability, in patients with solid tumors. Invest. N. Drugs 38, 1763-1773
    Amano, T., 2020. Gene regulatory landscape of the sonic hedgehog locus in embryonic development. Dev. Growth Differ. 62, 334-342
    Amit, I., Citri, A., Shay, T., Lu, Y., Katz, M., Zhang, F., Tarcic, G., Siwak, D., Lahad, J., Jacob-Hirsch, J., et al., 2007. A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39, 503-512
    Anderson, E., Devenney, P.S., Hill, R.E., Lettice, L.A., 2014. Mapping the Shh long-range regulatory domain. Development 141, 3934-3943
    Anderson, E., Hill, R.E., 2014. Long range regulation of the sonic hedgehog gene. Curr. Opin. Genet. Dev. 27, 54-59
    Avila, G.E., Zheng, X., Cui, X.X., Ryan, A.D., Hansson, A., Suh, J., Rabson, A.B., Chang, R.L., Shih, W.J., Lin, Y., et al., 2005. Inhibitory effects of 12-O-tetradecanoylphorbol-13-acetate alone or in combination with all-trans retinoic acid on the growth of cultured human pancreas cancer cells and pancreas tumor xenografts in immunodeficient mice. J. Pharmacol. Exp. Therapeut. 315, 170-187
    Bahrami, S., Drablos, F., 2016. Gene regulation in the immediate-early response process. Adv. Biol. Regul. 62, 37-49
    Baulies, A., Angelis, N., Li, V.S.W., 2020. Hallmarks of intestinal stem cells. Development 147, dev182675
    Briscoe, J., Therond, P.P., 2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416-429
    Chakrabarti, S., Wintheiser, G., Tella, S.H., Oxencis, C., Mahipal, A., 2021. TAS-102:a resurrected novel Fluoropyrimidine with expanding role in the treatment of gastrointestinal malignancies. Pharmacol. Ther. 224, 107823
    Coquenlorge, S., Yin, W.C., Yung, T., Pan, J., Zhang, X., Mo, R., Belik, J., Hui, C.C., Kim, T.H., 2019. GLI2 modulated by SUFU and SPOP induces intestinal stem cell niche signals in development and tumorigenesis. Cell Rep. 27, 3006-3018
    Costas-Chavarri, A., Nandakumar, G., Temin, S., Lopes, G., Cervantes, A., Cruz Correa, M., Engineer, R., Hamashima, C., Ho, G.F., Huitzil, F.D., et al., 2019. Treatment of patients with early-stage colorectal cancer:ASCO resource-stratified guideline. J. Glob. Oncol. 5, 1-19
    Cui, W., Wang, L.H., Wen, Y.Y., Song, M., Li, B.L., Chen, X.L., Xu, M., An, S.X., Zhao, J., Lu, Y.Y., et al., 2010. Expression and regulation mechanisms of Sonic Hedgehog in breast cancer. Cancer Sci. 101, 927-933
    Fares, J., Bou Diab, Z., Nabha, S., Fares, Y., 2019. Neurogenesis in the adult hippocampus:history, regulation, and prospective roles. Int. J. Neurosci. 129, 598-611
    Fowler, T., Sen, R., Roy, A.L., 2011. Regulation of primary response genes. Mol. Cell 44, 348-360
    Gao, Q., Zhou, G., Lin, S.J., Paus, R., Yue, Z., 2019. How chemotherapy and radiotherapy damage the tissue:comparative biology lessons from feather and hair models. Exp. Dermatol. 28, 413-418
    Garcia-Alfonso, P., Munoz Martin, A.J., Ortega Moran, L., Soto Alsar, J., Torres Perez-Solero, G., Blanco Codesido, M., Calvo Ferrandiz, P.A., Grasso Cicala, S., 2021. Oral drugs in the treatment of metastatic colorectal cancer. Ther. Adv. Med. Oncol. 13, 17588359211009001
    Guo, J.C., Zhang, P., Zhou, L., You, L., Liu, Q.F., Zhang, Z.G., Sun, B., Liang, Z.Y., Lu, J., Yuan, D., et al., 2020. Prognostic and predictive value of a five-molecule panel in resected pancreatic ductal adenocarcinoma:a multicentre study. EBioMedicine 55, 102767
    Hagege, H., Klous, P., Braem, C., Splinter, E., Dekker, J., Cathala, G., de Laat, W., Forne, T., 2007. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2, 1722-1733
    Han, Z.T., Zhu, X.X., Yang, R.Y., Sun, J.Z., Tian, G.F., Liu, X.J., Cao, G.S., Newmark, H.L., Conney, A.H., Chang, R.L., 1998. Effect of intravenous infusions of 12-O-tetradecanoylphorbol-13-acetate (TPA) in patients with myelocytic leukemia:preliminary studies on therapeutic efficacy and toxicity. Proc. Natl. Acad. Sci. U.S.A. 95, 5357-5361
    Haslam, I.S., Zhou, G., Xie, G., Teng, X., Ao, X., Yan, Z., Smart, E., Rutkowski, D., Wierzbicka, J., Zhou, Y., et al., 2021. Inhibition of shh signaling through MAPK activation controls chemotherapy-induced alopecia. J. Invest. Dermatol. 141, 334-344
    Huang, H., Cao, K., Malik, S., Zhang, Q., Li, D., Chang, R., Wang, H., Lin, W., Van Doren, J., Zhang, K., et al., 2015. Combination of 12-O-tetradecanoylphorbol-13-acetate with diethyldithiocarbamate markedly inhibits pancreatic cancer cell growth in 3D culture and in immunodeficient mice. Int. J. Mol. Med. 35, 1617-1624
    Huycke, T.R., Miller, B.M., Gill, H.K., Nerurkar, N.L., Sprinzak, D., Mahadevan, L., Tabin, C.J., 2019. Genetic and mechanical regulation of intestinal smooth muscle development. Cell 179, 90-105
    Kasperczyk, H., Baumann, B., Debatin, K.M., Fulda, S., 2009. Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. Faseb. J. 23, 21-33
    Longley, D.B., Harkin, D.P., Johnston, P.G., 2003. 5-fluorouracil:mechanism of action and clinical strategies. Nat. Rev. Cancer 3, 330-338
    Madison, B.B., Braunstein, K., Kuizon, E., Portman, K., Qiao, X. T., Gumucio, D.L., 2005. Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 132, 279-289
    Mao, J., Kim, B.M., Rajurkar, M., Shivdasani, R.A., McMahon, A.P., 2010. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 137, 1721-1729
    Marechal, R., Bachet, J.B., Calomme, A., Demetter, P., Delpero, J.R., Svrcek, M., Cros, J., Bardier-Dupas, A., Puleo, F., Monges, G., et al., 2015. Sonic hedgehog and Gli1 expression predict outcome in resected pancreatic adenocarcinoma. Clin. Cancer Res. 21, 1215-1224
    Margalit, O., Mamtani, R., Kopetz, S., Yang, Y.X., Lawrence, Y.R., Abu-Gazala, S., Reiss, K.A., Golan, T., Halpern, N., Aderka, D, et al., 2019. Refining the use of adjuvant oxaliplatin in clinical stage II or III rectal adenocarcinoma. Oncol. 24, e671-e676
    Mazumdar, T., DeVecchio, J., Shi, T., Jones, J., Agyeman, A., Houghton, J.A., 2011. Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res. 71, 1092-1102
    Miura, K., Kinouchi, M., Ishida, K., Fujibuchi, W., Naitoh, T., Ogawa, H., Ando, T., Yazaki, N., Watanabe, K., Haneda, S., et al., 2010. 5-fu metabolism in cancer and orally-administrable 5-fu drugs. Cancers 2, 1717-1730
    Mukhopadhyay, A., Krishnaswami, S.R., Cowing-Zitron, C., Hung, N.J., Reilly-Rhoten, H., Burns, J., Yu, B.D., 2013. Negative regulation of Shh levels by Kras and Fgfr2 during hair follicle development. Dev. Biol. 373, 373-382
    Nakashima, H., Nakamura, M., Yamaguchi, H., Yamanaka, N., Akiyoshi, T., Koga, K., Yamaguchi, K., Tsuneyoshi, M., Tanaka, M., Katano, M., 2006. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res. 66, 7041-7049
    Niyaz, M., Khan, M.S., Wani, R.A., Shah, O.J., Mudassar, S., 2020. Sonic hedgehog protein is frequently up-regulated in pancreatic cancer compared to colorectal cancer. Pathol. Oncol. Res. 26, 551-557
    Noman, A.S., Uddin, M., Rahman, M.Z., Nayeem, M.J., Alam, S.S., Khatun, Z., Wahiduzzaman, M., Sultana, A., Rahman, M.L., Ali, M.Y., et al., 2016. Overexpression of sonic hedgehog in the triple negative breast cancer:clinicopathological characteristics of high burden breast cancer patients from Bangladesh. Sci. Rep. 6, 18830
    Pagel, J.I., Deindl, E., 2012. Disease progression mediated by egr-1 associated signaling in response to oxidative stress. Int. J. Mol. Sci. 13, 13104-13117
    Petrova, R., Joyner, A.L., 2014. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 141, 3445-3457
    Pombo, A., & Dillon, N., 2015. Three-dimensional genome architecture:players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245-257
    Regan, J.L., Schumacher, D., Staudte, S., Steffen, A., Haybaeck, J., Keilholz, U., Schweiger, C., Golob-Schwarzl, N., Mumberg, D., Henderson, D., et al., 2017. Non-canonical hedgehog signaling is a positive regulator of the WNT pathway and is required for the survival of colon cancer stem cells. Cell Rep. 21, 2813-2828
    Rezatabar, S., Karimian, A., Rameshknia, V., Parsian, H., Majidinia, M., Kopi, T.A., Bishayee, A., Sadeghinia, A., Yousefi, M., Monirialamdari, M., et al., 2019. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 234, 14951-14965
    Roberts, D.J., Johnson, R.L., Burke, A.C., Nelson, C.E., Morgan, B.A., Tabin, C., 1995. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121, 3163-3174
    Sagai, T., Amano, T., Tamura, M., Mizushina, Y., Sumiyama, K., Shiroishi, T., 2009. A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings. Development 136, 1665-1674
    Sasai, N., Toriyama, M., Kondo, T., 2019. Hedgehog signal and genetic disorders. Front. Genet. 10, 1103
    Shyer, A.E., Huycke, T.R., Lee, C., Mahadevan, L., Tabin, C.J., 2015. Bending gradients:how the intestinal stem cell gets its home. Cell 161, 569-580
    Spivak-Kroizman, T.R., Hostetter, G., Posner, R., Aziz, M., Hu, C., Demeure, M.J., Von Hoff, D., Hingorani, S.R., Palculict, T.B., Izzo, J., et al., 2013. Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res. 73, 3235-3247
    Tang, Z., Kang, B., Li, C., Chen, T., Zhang, Z., 2019. GEPIA2:an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556-W560
    Thakore, P.I., D'Ippolito, A.M., Song, L., Safi, A., Shivakumar, N.K., Kabadi, A.M., Reddy, T.E., Crawford, G.E., Gersbach, C.A., 2015. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143-1149
    Trizzino, M., Zucco, A., Deliard, S., Wang, F., Barbieri, E., Veglia, F., Gabrilovich, D., Gardini, A., 2021. EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. Sci. Adv. 7, eaaz8836
    Tsukiji, N., Amano, T., Shiroishi, T., 2014. A novel regulatory element for Shh expression in the lung and gut of mouse embryos. Mech. Dev. 131, 127-136
    Vodenkova, S., Buchler, T., Cervena, K., Veskrnova, V., Vodicka, P., Vymetalkova, V., 2020. 5-fluorouracil and other fluoropyrimidines in colorectal cancer:past, present and future. Pharmacol. Ther. 206, 107447
    Wang, Q., Huang, S., Yang, L., Zhao, L., Yin, Y., Liu, Z., Chen, Z., Zhang, H., 2008. Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells. Acta Biochim. Biophys. Sin. 40, 819-829
    Xie, G., Wang, H., Yan, Z., Cai, L., Zhou, G., He, W., Paus, R., Yue, Z., 2015. Testing chemotherapeutic agents in the feather follicle identifies a selective blockade of cell proliferation and a key role for sonic hedgehog signaling in chemotherapy-induced tissue damage. J. Invest. Dermatol. 135, 690-700
    Xu, M., Li, X., Liu, T., Leng, A., Zhang, G., 2012. Prognostic value of hedgehog signaling pathway in patients with colon cancer. Med. Oncol. 29, 1010-1016
    Yamashita, T., Ueda, Y., Fuji, N., Itoh, T., Kurioka, H., Shirasaka, T., Yamagishi, H., 2006. Potassium oxonate, an enzyme inhibitor compounded in S-1, reduces the suppression of antitumor immunity induced by 5-fluorouracil. Cancer Chemother. Pharmacol. 58, 183-188
    Yao, C.D., Haensel, D., Gaddam, S., Patel, T., Atwood, S.X., Sarin, K.Y., Whitson, R.J., McKellar, S., Shankar, G., Aasi, S., et al., 2020. AP-1 and TGFss cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat. Commun. 11, 5079
    Yao, P.J., Petralia, R.S., Mattson, M.P., 2016. Sonic hedgehog signaling and hippocampal neuroplasticity. Trends Neurosci. 39, 840-850
    Yeo, N.C., Chavez, A., Lance-Byrne, A., Chan, Y., Menn, D., Milanova, D., Kuo, C.C., Guo, X., Sharma, S., Tung, A., et al., 2018. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611-616
    Yoo, Y.A., Kang, M.H., Lee, H.J., Kim, B.H., Park, J.K., Kim, H.K., Kim, J.S., Oh, S.C., 2011. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res. 71, 7061-7070
    Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., Dong, W., 2016. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 4350965
    Zhao, X., Ponomaryov, T., Ornell, K.J., Zhou, P., Dabral, S.K., Pak, E., Li, W., Atwood, S.X., Whitson, R.J., Chang, A.L., et al., 2015. RAS/MAPK activation drives resistance to Smo inhibition, metastasis, and tumor evolution in Shh pathway-dependent tumors. Cancer Res. 75, 3623-3635
    Zhu, G., Hu, J., Xi, R., 2021. The cellular niche for intestinal stem cells:a team effort. Cell Regen. 10, 1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (295) PDF downloads (40) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return