Abdelrahman, M., Burritt, D.J., Gupta, A., Tsujimoto, H., Tran, L.-S.P., Foyer, C., 2020. Heat stress effects on source-sink relationships and metabolome dynamics in wheat. J. Exp. Bot. 71, 543-554
|
Aikawa, S., Kobayashi, M.J., Satake, A., Shimizu, K.K., Kudoh, H., 2010. Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc. Natl. Acad. Sci. U S A 107, 11632-11637
|
Andres, F., Coupland, G., 2012. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627-639
|
Angel, A., Song, J., Dean, C., Howard, M., 2011. A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476, 105-108
|
Avvakumov, N., Nourani, A., Cote, J., 2011. Histone chaperones: modulators of chromatin marks. Mol. Cell 41, 502-514
|
Baier, M., Bittner, A., Prescher, A., van Buer, J., 2019. Preparing plants for improved cold tolerance by priming. Plant Cell Environ. 42, 782-800
|
Banti, V., Mafessoni, F., Loreti, E., Alpi, A., Perata, P., 2010. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol. 152, 1471-1483
|
Baurle, I., 2016. Plant heat adaptation: priming in response to heat stress. F1000Res 5 (F1000 Faculty Rev), 694
|
Blackledge, N.P., Klose, R.J., 2021. The molecular principles of gene regulation by Polycomb repressive complexes. Nat. Rev. Mol. Cell Biol. 22, 815-833
|
Borg, M., Jacob, Y., Susaki, D., LeBlanc, C., Buendia, D., Axelsson, E., Kawashima, T., Voigt, P., Boavida, L., Becker, J., et al., 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat. Cell Biol. 22, 621-629
|
Bouche, F., Woods, D.P., Amasino, R.M., 2017. Winter memory throughout the plant kingdom: different paths to flowering. Plant Physiol. 173, 27-35
|
Brzezinka, K., Altmann, S., Baurle, I., 2019. BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory. Plant Cell Environ. 42, 771-781
|
Brzezinka, K., Altmann, S., Czesnick, H., Nicolas, P., Gorka, M., Benke, E., Kabelitz, T., Jahne, F., Graf, A., Kappel, C., et al., 2016. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife 5, e17061
|
Buzas, D.M., Robertson, M., Finnegan, E.J., Helliwell, C.A., 2011. Transcription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis Polycomb target gene FLC. Plant J. 65, 872-881
|
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., Wang, T.T., 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262
|
Charng, Y.Y., Liu, H.C., Liu, N.Y., Hsu, F.C., Ko, S.S., 2006. Arabidopsis HSA32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol. 140, 1297-1305
|
Chen, A., Dubcovsky, J., 2012. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. 8, e1003134
|
Chen, N., Veerappan, V., Abdelmageed, H., Kang, M., Allen, R.D., 2018. HSI2/VAL1 silences AGL15 to regulate the developmental transition from seed maturation to vegetative growth in Arabidopsis. Plant Cell 30, 600-619
|
Chen, Z., Galli, M., Gallavotti, A., 2022. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr. Opin. Plant Biol. 65, 102134
|
Choi, K., Kim, J., Hwang, H.J., Kim, S., Park, C., Kim, S.Y., Lee, I., 2011. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23, 289-303
|
Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., Abrams, S.R., 2010. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651-679
|
De Lucia, F., Crevillen, P., Jones, A.M., Greb, T., Dean, C., 2008. A PHD-Polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc. Natl. Acad. Sci. U S A 105, 16831-16836
|
Diallo, A.O., Ali-Benali, M.A., Badawi, M., Houde, M., Sarhan, F., 2012. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol. Genet. Genomics 287, 575-590
|
Filichkin, S.A., Priest, H.D., Givan, S.A., Shen, R., Bryant, D.W., Fox, S.E., Wong, W.K., Mockler, T.C., 2010. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 20, 45-58
|
Finkelstein, R.R., Lynch, T.J., 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609
|
Friedrich, T., Faivre, L., Baurle, I., Schubert, D., 2019. Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ. 42, 762-770
|
Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K., Lamke, J., Gorka, M., Kappel, C., Sokolowska, E., Skirycz, A., et al., 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat. Commun. 12, 3426
|
Greenup, A., Peacock, W.J., Dennis, E.S., Trevaskis, B., 2009. The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann. Bot. 103, 1165-1172
|
Harndahl, U., Hall, R.B., Osteryoung, K.W., Vierling, E., Bornman, J.F., Sundby, C., 1999. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4, 129-138
|
He, Y., Doyle, M.R., Amasino, R.M., 2004. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev. 18, 2774-2784
|
He, Y.H., Chen, T., Zeng, X.L., 2020. Genetic and epigenetic understanding of the seasonal timing of flowering. Plant Commun. 1, 100008
|
Heo, J.B., Sung, S., 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79
|
Hsu, S.F., Lai, H.C., Jinn, T.L., 2010. Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol. 153, 773-784
|
Jiang, D., Berger, F., 2017. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science 357, 1146-1149
|
Jiang, D., Kong, N.C., Gu, X., Li, Z., He, Y., 2011. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet. 7, e1001330
|
Jiang, L., Hu, W., Qian, Y., Ren, Q., Zhang, J., 2021. Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize. Gene 770, 145348
|
Jo, L., Pelletier, J.M., Harada, J.J., 2019. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. J. Integr. Plant Biol. 61, 564-580
|
Kanno, Y., Jikumaru, Y., Hanada, A., Nambara, E., Abrams, S.R., Kamiya, Y., Seo, M., 2010. Comprehensive hormone profiling in developing Arabidopsis seeds: Examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 51, 1988-2001
|
Kyung, J., Jeon, M., Jeong, G., Shin, Y., Seo, E., Yu, J., Kim, H., Park, C.M., Hwang, D., Lee, I., 2022. The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element. Plant Cell 34, 1020-1037
|
Lamke, J., Brzezinka, K., Altmann, S., Baurle, I., 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. Embo J. 35, 162-175
|
Larkindale, J., Hall, J.D., Knight, M.R., Vierling, E., 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138, 882-897
|
Li, C., Gu, L., Gao, L., Chen, C., Wei, C.Q., Qiu, Q., Chien, C.W., Wang, S., Jiang, L., Ai, L.F., et al., 2016. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687-693
|
Li, Z., Jiang, D., He, Y., 2018. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. Nat. Plants 4, 836-846
|
Lin, M.-Y., Chai, K.H., Ko, S.S., Kuang, L.Y., Lur, H.S., Charng, Y.Y., 2014. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol. 164, 2045-2053
|
Ling, Y., Serrano, N., Gao, G., Atia, M., Mokhtar, M., Woo, Y.H., Bazin, J., Veluchamy, A., Benhamed, M., Crespi, M., et al., 2018. Thermopriming triggers splicing memory in Arabidopsis. J. Exp. Bot. 69, 2659-2675
|
Liu, C., Lu, F., Cui, X., Cao, X., 2010. Histone methylation in higher plants. Annu. Rev. Plant Biol. 61, 395-420
|
Liu, H.C., Liao, H.T., Charng, Y.Y., 2011. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34, 738-751
|
Liu, J., Feng, L., Gu, X., Deng, X., Qiu, Q., Li, Q., Zhang, Y., Wang, M., Deng, Y., Wang, E., et al., 2019. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res. 29, 379-390
|
Liu, J., Feng, L., Li, J., He, Z., 2015. Genetic and epigenetic control of plant heat responses. Front. Plant Sci. 6, 267
|
Liu, N.Y., Ko, S.S., Yeh, K.C., Charng, Y.Y., 2006. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci. 170, 976-985
|
Luo, C., Sidote, D.J., Zhang, Y., Kerstetter, R.A., Michael, T.P., Lam, E., 2013. Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J. 73, 77-90
|
Luo, X., He, Y., 2020. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. J. Integr. Plant Biol. 62, 104-117
|
Luo, X., Ou, Y., Li, R.J., He, Y.H., 2020. Maternal transmission of the epigenetic 'memory of winter cold' in Arabidopsis. Nat. Plants 6, 1211-1218
|
McKeown, M., Schubert, M., Marcussen, T., Fjellheim, S., Preston, J.C., 2016. Evidence for an early origin of vernalization responsiveness in temperate Pooideae grasses. Plant Physiol. 172, 416-426
|
Michaels, S.D., Amasino, R.M., 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949-956
|
Nagaraju, M., Reddy, P.S., Kumar, S.A., Srivastava, R.K., Kishor, P.B.K., Rao, D.M., 2015. Genome-wide scanning and characterization of Sorghum bicolor L. heat shock transcription factors. Curr. Genomics 16, 279-291
|
Nakamura, S., Lynch, T.J., Finkelstein, R.R., 2001. Physical interactions between ABA response loci of Arabidopsis. Plant J. 26, 627-635
|
Ng, H.H., Robert, F., Young, R.A., Struhl, K., 2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709-719
|
Nishizawa-Yokoi, A., Nosaka, R., Hayashi, H., Tainaka, H., Maruta, T., Tamoi, M., Ikeda, M., Ohme-Takagi, M., Yoshimura, K., Yabuta, Y., et al., 2011. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol. 52, 933-945
|
Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., Scharf, K.D., 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6, 177-189
|
Oberkofler, V., Pratx, L., Baurle, I., 2021. Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Curr. Opin. Plant Biol 61
|
Olas, J.J., Apelt, F., Annunziata, M.G., John, S., Richard, S.I., Gupta, S., Kragler, F., Balazadeh, S., Mueller-Roeber, B., 2021. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol. Plant 14, 1508-1524
|
Oliver, S.N., Finnegan, E.J., Dennis, E.S., Peacock, W.J., Trevaskis, B., 2009. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc. Natl. Acad. Sci. U S A 106, 8386-8391
|
Pandey, S.P., Benstein, R.M., Wang, Y., Schmid, M., van Zanten, M., 2021. Epigenetic regulation of temperature responses: past successes and future challenges. J. Exp. Bot. 21, 7482-7497
|
Perrella, G., Baurle, I., Zanten, M., 2022. Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytol. 234, 1144-1160
|
Richter, K., Haslbeck, M., Buchner, J., 2010. The heat shock response: Life on the verge of death. Mol. Cell 40, 253-266
|
Sakata, Y., Nakamura, I., Taji, T., Tanaka, S., Quatrano, R.S., 2010. Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element. Plant Signal. Behav. 5, 1061-1066
|
Scharf, K.D., Berberich, T., Ebersberger, I., Nover, L., 2012. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta. 1819, 104-119
|
Schlenkera, W., Roberts, M.J., 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. U S A 106, 15594-15598
|
Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., Coupland, G., 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898-912
|
Sedaghatmehr, M., Mueller-Roeber, B., Balazadeh, S., 2016. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat. Commun. 7, 12439
|
Sharma, N., Ruelens, P., D'Hauw, M., Maggen, T., Dochy, N., Torfs, S., Kaufmann, K., Rohde, A., Geuten, K., 2017. A FLOWERING LOCUS C homolog is a vernalization-regulated repressor in Brachypodium and is cold regulated in wheat. Plant Physiol. 173, 1301-1315
|
Shilatifard, A., 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65-95
|
Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M., Dean, C., 2005. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163-1173
|
Shvedunova, M., Akhtar, A., 2022. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329-349
|
Stief, A., Altmann, S., Hoffmann, K., Pant, B.D., Scheible, W.R., Baurle, I., 2014. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26, 1792-1807
|
Sung, S., Amasino, R.M., 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164
|
Tao, Z., Hu, H., Luo, X., Jia, B., Du, J., He, Y., 2019. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. Nat. Plants 5, 424-435
|
Tao, Z., Shen, L., Gu, X., Wang, Y., Yu, H., He, Y., 2017. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551, 124-128
|
Urrea Castellanos, R., Friedrich, T., Petrovic, N., Altmann, S., Brzezinka, K., Gorka, M., Graf, A., Baurle, I., 2020. FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. Plant J. 104, 7-17
|
Wang, C., Zhang, Q., Shou, H.X., 2009a. Identification and expression analysis of OsHsfs in rice. J. Zhejiang Univ. Sci. B 10, 291-300
|
Wang, J.-W., Czech, B., Weigel, D., 2009b. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738-749
|
Wang, J.W., 2014. Regulation of flowering time by the miR156-mediated age pathway. J. Exp. Bot. 65, 4723-4730
|
Wang, Y.P., Li, L., Ye, T.T., Lu, Y.M., Chen, X., Wu, Y., 2013. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J. Exp. Bot. 64, 675-684
|
Weng, M., Yang, Y.U.E., Feng, H., Pan, Z., Shen, W.-H., Zhu, Y.A.N., Dong, A., 2014. Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ. 37, 2128-2138
|
Wu, T.Y., Juan, Y.T., Hsu, Y.H., Wu, S.H., Liao, H.T., Fung, R., Charng, Y.Y., 2013. Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis. Plant Physiol. 161, 2075-2084
|
Xiao, J., Xu, S.J., Li, C.H., Xu, Y.U., Xing, L.J., Niu, Y.D., Huan, Q., Tang, Y.M., Zhao, C.P., Wagner, D., et al., 2014. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat. Nat. Commun. 5, 4572
|
Xie, L., Zhang, Y., Wang, K., Luo, X., Xu, D., Tian, X., Li, L., Ye, X., Xia, X., Li, W., et al., 2021. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. New Phytol. 231, 834-848
|
Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., Sun, Q., 2010. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 10, 123
|
Xu, G., Tao, Z., He, Y., 2022. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. Plant Cell 34, 2205-2221
|
Xu, S., Chong, K., 2018. Remembering winter through vernalisation. Nat. Plants 4, 997-1009
|
Xu, S., Dong, Q., Deng, M., Lin, D., Xiao, J., Cheng, P., Xing, L., Niu, Y., Gao, C., Zhang, W., et al., 2021. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol. Plant 14, 1525-1538
|
Yamaguchi, N., Matsubara, S., Yoshimizu, K., Seki, M., Hamada, K., Kamitani, M., Kurita, Y., Nomura, Y., Nagashima, K., Inagaki, S., et al., 2021. H3K27me3 demethylases alter HSP22 and HSP17.6C expression in response to recurring heat in Arabidopsis. Nat. Commun. 12, 3480
|
Yan, L.L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V., Dubcovsky, J., 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640-1644
|
Yang, H., Berry, S., Olsson, T.S.G., Hartley, M., Howard, M., Dean, C., 2017. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 357, 1142-1145
|
Yeh, C.H., Kaplinsky, N.J., Hu, C., Charng, Y.Y., 2012. Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Sci. 195, 10-23
|
Yu, X., Wang, H., Lu, Y., de Ruiter, M., Cariaso, M., Prins, M., van Tunen, A., He, Y., 2012. Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J. Exp. Bot. 63, 1025-1038
|
Yuan, W., Luo, X., Li, Z., Yang, W., Wang, Y., Liu, R., Du, J., He, Y., 2016. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat. Genet. 48, 1527-1534
|
Zeng, X., Gao, Z., Jiang, C., Yang, Y., Liu, R., He, Y., 2020. HISTONE DEACETYLASE 9 functions with Polycomb silencing to repress FLOWERING LOCUS C expression. Plant Physiol. 182, 555-565
|
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., et al., 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. U S A 114, 9326-9331
|
Zhao, L., Wang, S., Cao, Z., Ouyang, W., Zhang, Q., Xie, L., Zheng, R., Guo, M., Ma, M., Hu, Z., et al., 2019. Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation. Nat. Commun. 10, 3640
|
Zhao, Y.S., Antoniou-Kourounioti, R.L., Calder, G., Dean, C., Howard, M., 2020. Temperature-dependent growth contributes to long-term cold sensing. Nature 583, 825-829
|
Zhong, L., Zhou, W., Wang, H., Ding, S., Lu, Q., Wen, X., Peng, L., Zhang, L., Lu, C., 2013. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell 25, 2925-2943
|
Zhou, C.M., Zhang, T.Q., Wang, X., Yu, S., Lian, H., Tang, H., Feng, Z.Y., Zozomova-Lihova, J., Wang, J.W., 2013. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340, 1097-1100
|
Zhu, J.K., 2016. Abiotic stress signaling and responses in plants. Cell 167, 313-324
|
Zhu, P., Lister, C., Dean, C., 2021. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 599, 657-661
|