Abdelmohsen, K., Panda, A.C., Munk, R., Grammatikakis, I., Dudekula, D.B., De, S., Kim, J., Noh, J.H., Kim, K.M., Martindale, J.L. et al., 2017. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361-369
|
Aktas, T., Ilik, I.A., Maticzka, D., Bhardwaj, V., Rodrigues, C.P., Mittler, G., Manke, T., Backofen, R.,Akhtar, A., 2017. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115-119
|
Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., Kadener, S., 2014. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55-66
|
Barrett, S.P., Wang, P.L.,Salzman, J., 2015. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4, e07540
|
Chen, L.F., Ding, X.L., Zhang, H., He, T.T., Li, Y.W., Wang, T.L., Li, X.Q., Jin, L., Song, Q.J., Yang, S.P., et al., 2018b. Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genom. 19
|
Chen, L., Yu, Y.Y., Zhang, X.C., Liu, C., Ye, C.Y., Fan, L.J., 2016. PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics 32, 3528-3529
|
Chen, L., Zhang, P., Fan, Y., Lu, Q., Li, Q., Yan, J.B., Muehlbauer, G.J., Schnable, P.S., Dai, M.Q.,Li, L., 2018a. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol. 217, 1292-1306
|
Chen, S., Cao, X.F., Zhang, J.Y., Wu, W.Y., Zhang, B.,Zhao, F.Q., 2022. circVAMP3 drives CAPRIN1 phase separation and inhibits hepatocellular carcinoma by suppressing c-Myc translation. Adv. Sci. 9, e2103817
|
Chen, X., Sun, S., Liu, F.J., Shen, E.H., Liu, L., Ye, C.Y., Xiao, B.G., Timko, M.P., Zhu, Q.H., Fan, L.J., et al., 2019. A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana tabacum). BMC Genom. 20, 856
|
Cheng, J.P., Zhang, Y., Li, Z.W., Wang, T.Y., Zhang, X.T.,Zheng, B.L., 2018. A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci. China Life Sci. 61, 204-213
|
Chu, Q.J., Bai, P.P., Zhu, X.T., Zhang, X.C., Mao, L.F., Zhu, Q.H., Fan, L.J.,Ye, C.Y., 2020. Characteristics of plant circular RNAs. Briefings Bioinf. 21, 135-143
|
Chu, Q.J., Ding, Y.W., Xu, X.X., Ye, C.Y., Zhu, Q.H., Guo, L.B.,Fan, L.J., 2022. Recent origination of circular RNAs in plants. New Phytol. 233, 515-525
|
Chu, Q., Zhang, X., Zhu, X., Liu, C., Mao, L., Ye, C., Zhu, Q.H.,Fan, L., 2017. PlantcircBase: a database for plant circular RNAs. Mol. Plant 10, 1126-1128
|
Conn, S.J., Pillman, K.A., Toubia, J., Conn, V.M., Salmanidis, M., Phillips, C.A., Roslan, S., Schreiber, A.W., Gregory, P.A.,Goodall, G.J., 2015. The RNA binding protein Quaking regulates formation of circRNAs. Cell 160, 1125-1134
|
Conn, V.M., Hugouvieux, V., Nayak, A., Conos, S.A., Capovilla, G., Cildir, G., Jourdain, A., Tergaonkar, V., Schmid, M., Zubieta, C., et al., 2017. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Native Plants 3, 17053
|
Dahl, M., Daugaard, I., Andersen, M.S., Hansen, T.B., Gronbaek, K., Kjems, J.,Kristensen, L.S., 2018. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab. Invest. 98, 1657-1669
|
Di Timoteo, G., Dattilo, D., Centron-Broco, A., Colantoni, A., Guarnacci, M., Rossi, F., Incarnato, D., Oliviero, S., Fatica, A., Morlando, M., et al., 2020. Modulation of circRNA metabolism by m6A modification. Cell Rep. 31, 107641
|
Fan, J., Quan, W., Li, G.B., Hu, X.H., Wang, Q., Wang, H., Li, X.P., Luo, X., Feng, Q., Hu, Z.J., et al., 2020. circRNAs are involved in the rice-magnaporthe oryzae interaction. Plant Physiol. 182, 272-286
|
Ferreira, H.J., Davalos, V., de Moura, M.C., Soler, M., Perez-Salvia, M., Bueno-Costa, A., Setien, F., Moran, S., Villanueva, A.,Esteller, M., 2018. Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget 9, 29208-29219
|
Fu, X.Z., Zhang, X.Y., Qiu, J.Y., Zhou, X., Yuan, M., He, Y.Z., Chun, C.P., Cao, L., Ling, L.L.,Peng, L.Z., 2019. Whole-transcriptome RNA sequencing reveals the global molecular responses and ceRNA regulatory network of mRNAs, lncRNAs, miRNAs and circRNAs in response to copper toxicity in Ziyang Xiangcheng (Citrus junos Sieb. Ex Tanaka). BMC Plant Biol. 19, 509
|
Gao, Y., Wang, J.F.,Zhao, F.Q., 2015. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16, 4
|
Gao, Z., Li, J., Luo, M., Li, H., Chen, Q.J., Wang, L., Song, S.R., Zhao, L.P., Xu, W.P., Zhang, C.X., et al., 2019. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1. Plant Physiol. 180, 966-985
|
Ghorbani, A., Izadpanah, K., Peters, J.R., Dietzgen, R.G.,Mitter, N., 2018. Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize. Plant Sci. 274, 402-409
|
Guo, J.U., Agarwal, V., Guo, H.L.,Bartel, D.P., 2014. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409
|
Hansen, T.B., 2018. Improved circRNA identification by combining prediction algorithms. Front. Cell Dev. Biol. 6, 20
|
Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K.,Kjems, J., 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388
|
Hansen, T.B., Veno, M.T., Damgaard, C.K.,Kjems, J., 2016. Comparison of circular RNA prediction tools. Nucleic Acids Res. 44, e58
|
He, X.Y., Guo, S.R., Wang, Y., Wang, L.W., Shu, S.,Sun, J., 2020. Systematic identification and analysis of heat-stress-responsive lncRNAs, circRNAs and miRNAs with associated co-expression and ceRNA networks in cucumber (Cucumis sativus L.). Physiol. Plantarum 168, 736-754
|
Hong, Y.H., Meng, J., Zhang, M.,Luan, Y.S., 2020. Identification of tomato circular RNAs responsive to Phytophthora infestans. Gene 746, 144652
|
Hsu, M.T.,Cocaprados, M., 1979. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339-340
|
Huang, X.P., Zhang, H.Y., Guo, R., Wang, Q., Liu, X.Z., Kuang, W.G., Song, H.Y., Liao, J.L., Huang, Y.J.,Wang, Z.H., 2021. Systematic identification and characterization of circular RNAs involved in flag leaf senescence of rice. Planta 253, 26
|
Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H.T., Orejuela, M.R., Piechotta, M., Levanon, E.Y., Landthaler, M., Dieterich, C., et al., 2015. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170-177
|
Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J.Z., Marzluff, W.F.,Sharpless, N.E., 2013. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141-157
|
Kramer, M.C., Liang, D.M., Tatomer, D.C., Gold, B., March, Z.M., Cherry, S.,Wilusz, J.E., 2015. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168-2182
|
Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B.,Kjems, J., 2019. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675-691
|
Li, Q.D., Wang, Y.C., Wu, S., Zhou, Z., Ding, X.J., Shi, R.H., Thorne, R.F., Zhang, X.D., Hu, W.L.,Wu, M.A., 2019. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metabol. 30, 157-173
|
Li, S.Q., Li, X., Xue, W., Zhang, L., Yang, L.Z., Cao, S.M., Lei, Y.N., Liu, C.X., Guo, S.K., Shan, L., et al., 2021. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat. Methods 18, 51-59
|
Li, T.W., Shao, Y.F., Fu, L.Y., Xie, Y., Zhu, L.W., Sun, W.L., Yu, R., Xiao, B.X.,Guo, J.M., 2018. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J. Mol. Med. 96, 85-96
|
Li, X., Liu, C.X., Xue, W., Zhang, Y., Jiang, S., Yin, Q.F., Wei, J., Yao, R.W., Yang, L.,Chen, L.L., 2017. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell 67, 214-227
|
Li, Z.Y., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X.L., Zhong, G.L., Yu, B., Hu, W.C., Dai, L.M., et al., 2015 Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256-264
|
Li, Z.W., Wang, S.P., Cheng, J.P., Su, C.B., Zhong, S.X., Liu, Q., Fang, Y.D., Yu, Y., Lv, H., Zheng, Y., et al., 2016. Intron lariat RNA inhibits microRNA biogenesis by sequestering the dicing complex in Arabidopsis. PLoS Genet. 12, e1006422
|
Liang, D.M., Tatomer, D.C., Luo, Z., Wu, H., Yang, L., Chen, L.L., Cherry, S.,Wilusz, J.E., 2017. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol. Cell 68, 940-954
|
Liang, Y.W., Zhang, Y.Z., Xu, L.A., Zhou, D., Jin, Z.M., Zhou, H.Y., Lin, S., Cao, J.S.,Huang, L., 2019. CircRNA expression pattern and ceRNA and miRNA-mRNA networks involved in anther development in the CMS line of Brassica campestris. Int. J. Mol. Sci. 20, 4808
|
Liao, X., Li, X.J., Zheng, G.T., Chang, F.R., Fang, L., Yu, H., Huang, J.,Zhang, Y.F., 2022. Mitochondrion-encoded circular RNAs are widespread and translatable in plants.
|
Liu, C.X., Li, X., Nan, F., Jiang, S., Gao, X., Guo, S.K., Xue, W., Cui, Y.G., Dong, K.G., Ding, H.H., et al., 2019b. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865-880
|
Liu, S., Wang, Q.J., Li, X.Y., Wang, G.B.,Wan, Y.L., 2019a. Detecting of chloroplast circular RNAs in Arabidopsis thaliana. Plant Signal. Behav. 14, 1621088
|
Liu, T.F., Zhang, L., Chen, G.,Shi, T.L., 2017. Identifying and characterizing the circular RNAs during the lifespan of Arabidopsis leaves. Front. Plant Sci. 8, 1278
|
Liu, X.Q., Gao, Y.B., Liao, J.K., Miao, M., Chen, K., Xi, F.H., Wei, W.T., Wang, H.H., Wang, Y.S., Xu, X., et al., 2021. Genome-wide profiling of circular RNAs, alternative splicing, and R-loops in stem-differentiating xylem of Populus trichocarpa. J. Integr. Plant Biol. 63, 1294-1308
|
Lu, T.T., Cui, L.L., Zhou, Y., Zhu, C.R., Fan, D.L., Gong, H., Zhao, Q., Zhou, C.C., Zhao, Y., Lu, D.F., et al., 2015. Transcriptome-wide investigation of circular RNAs in rice. RNA 21, 2076-2087
|
Luo, Z., Han, L.Q., Qian, J.,Li, L., 2019. Circular RNAs exhibit extensive intraspecific variation in maize. Planta 250, 69-78
|
Lv, L.L., Yu, K.Y., Lu, H.Y., Zhang, X.Q., Liu, X.Q., Sun, C.Y., Xu, H.Q., Zhang, J.Y., He, X.H.,Zhang, D., 2020. Transcriptome-wide identification of novel circular RNAs in soybean in response to low-phosphorus stress. PLoS One 15, e227243
|
Ma, P., Gao, S., Zhang, H.Y., Li, B.Y., Zhong, H.X., Wang, Y.K., Hu, H.M., Zhang, H.K., Luo, B.W., Zhang, X., et al., 2021. Identification and characterization of circRNAs in maize seedlings under deficient nitrogen. Plant Biol. 23, 850-860
|
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., et al., 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333-338
|
Muthusamy, M., Kim, J.H., Kim, J.A.,Lee, S.I., 2021. Plant RNA binding proteins as critical modulators in drought, high salinity, heat, and cold stress responses: an updated overview. Int. J. Mol. Sci. 22, 6731
|
Pan, T., Sun, X.Q., Liu, Y.X., Li, H., Deng, G.B., Lin, H.H.,Wang, S.H., 2018. Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol. Biol. 96, 217-229
|
Pan, Z.H., Cai, J.Y., Lin, J.T., Zhou, H.N., Peng, J.W., Liang, J.L., Xia, L., Yin, Q., Zou, B.J., Zheng, J., et al., 2020. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol. Cancer 19, 71
|
Piwecka, M., Glazar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., Filipchyk, A., Klironomos, F., Jara, C.A.C., Fenske, P., et al., 2017. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526
|
Ren, Y.Z., Yue, H.F., Li, L., Xu, Y.H., Wang, Z.Q., Xin, Z.Y.,Lin, T.B., 2018. Identification and characterization of circRNAs involved in the regulation of low nitrogen-promoted root growth in hexaploid wheat. Biol. Res. 51, 43
|
Salih, H., Wang, X., Chen, B.J., Jia, Y.H., Gong, W.F.,Du, X.M., 2021. Identification, characterization and expression profiling of circular RNAs in the early cotton fiber developmental stages. Genomics 113, 356-365
|
Sanger, H.L., Klotz, G., Riesner, D., Gross, H.J.,Kleinschmidt, A.K., 1976. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. U. S. A. 73, 3852-3856
|
Seimiya, T., Otsuka, M., Iwata, T., Shibata, C., Tanaka, E., Suzuki, T., Koike, K., 2020. Emerging roles of exosomal circular RNAs in cancer. Front. Cell Dev. Biol. 8, 568366
|
Szabo, L., Morey, R., Palpant, N.J., Wang, P.L., Afari, N., Jiang, C., Parast, M.M., Murry, C.E., Laurent, L.C., Salzman, J., 2015. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 16, 126
|
Tan, J.J., Zhou, Z.J., Niu, Y.J., Sun, X.Y.,Deng, Z.P., 2017 Identification and functional characterization of tomato circRNAs derived from genes involved in fruit pigment accumulation. Sci. Rep. 7, 8594
|
Tang, C., Xie, Y., Yu, T., Liu, N., Wang, Z., Woolsey, R.J., Tang, Y., Zhang, X., Qin, W., Zhang, Y., et al., 2020. M6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 30, 211-228
|
Tong, W., Yu, J., Hou, Y., Li, F., Zhou, Q., Wei, C.,Bennetzen, J.L., 2018. Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis). Planta 248, 1417-1429
|
Vo, J.N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., Wu, Y.M., Dhanasekaran, S.M., Engelke, C.G., Cao, X., et al., 2019. The landscape of circular RNA in cancer. Cell 176, 869-881
|
Wang, H.Y., Wang, H.H., Zhang, H.X., Liu, S., Wang, Y.S., Gao, Y.B., Xi, F.H., Zhao, L.Z., Liu, B., Reddy, A.S.N., et al., 2019b. The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species. Bioinformatics 35, 3119-3126
|
Wang, K., Wang, C., Guo, B.H., Song, K., Shi, C.H., Jiang, X., Wang, K.Y., Tan, Y.C., Wang, L.Q., Wang, L., et al., 2019c. CropCircDB: a Comprehensive Circular RNA Resource for Crops in Response to Abiotic Stress. Database-Oxford 2019, baz053
|
Wang, P.L., Bao, Y., Yee, M.C., Barrett, S.P., Hogan, G.J., Olsen, M.N., Dinneny, J.R., Brown, P.O.,Salzman, J., 2014. Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9, e90859
|
Wang, W.H., Wang, J.L., Wei, Q.Z., Li, B.Y., Zhong, X.M., Hu, T.H., Hu, H.J.,Bao, C.L., 2019d. Transcriptome-wide identification and characterization of circular RNAs in leaves of Chinese Cabbage (Brassica rapa L. ssp. pekinensis) in Response to calcium deficiency-induced tip-burn. Sci. Rep. 9, 14544
|
Wang, X.S., Chang, X.C., Jing, Y., Zhao, J.L., Fang, Q.W., Sun, M.Y., Zhang, Y.Z., Li, W.B.,Li, Y.G., 2020. Identification and functional prediction of soybean circRNAs involved in low-temperature responses. J. Plant Physiol. 250, 153188
|
Wang, Y.X., Wang, Q., Gao, L.P., Zhu, B.Z., Luo, Y.B., Deng, Z.P.,Zuo, J.H., 2017b. Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato. Physiol. Plantarum 161, 311-321
|
Wang, Y., Xiong, Z.Y., Li, Q., Sun, Y.Y., Jin, J., Chen, H., Zou, Y., Huang, X.G.,Ding, Y., 2019a. Circular RNA profiling of the rice photo-thermosensitive genic male sterile line Wuxiang S reveals circRNA involved in the fertility transition. BMC Plant Biol. 19, 340
|
Wang, Y.X., Yang, M., Wei, S.M., Qin, F.J., Zhao, H.J.,Suo, B., 2017a. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front. Plant Sci. 7, 2024
|
Westholm, J.O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S.E., Graveley, B.R.,Lai, E.C., 2014. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966-1980
|
Wu, Z.H., Huang, W., Qin, E.D., Liu, S., Liu, H., Grennan, A.K., Liu, H.,Qin, R., 2020. Comprehensive identification and expression profiling of circular RNAs during nodule development in Phaseolus vulgaris. Front. Plant Sci. 11, 587185
|
Xiang, L.X., Cai, C.W., Cheng, J.R., Wang, L., Wu, C.F., Shi, Y.Z., Luo, J.Z., He, L., Deng, Y.S., Zhang, X., et al., 2018. Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq. PeerJ 6, e4500
|
Xu, X.L., Zhang, J.W., Tian, Y.H., Gao, Y., Dong, X., Chen, W.B., Yuan, X.N., Yin, W.N., Xu, J.J., Chen, K., et al., 2020. CircRNA inhibits DNA damage repair by interacting with host gene. Mol. Cancer 19, 128
|
Xu, Y.H., Ren, Y.Z., Lin, T.B.,Cui, D.Q., 2019. Identification and characterization of CircRNAs involved in the regulation of wheat root length. Biol. Res. 52, 19
|
Yang, Y., Fan, X.J., Mao, M.W., Song, X.W., Wu, P., Zhang, Y., Jin, Y.F., Yang, Y., Chen, L.L., Wang, Y., et al., 2017. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626-641
|
Ye, C.Y., Chen, L., Liu, C., Zhu, Q.H.,Fan, L.J., 2015. Widespread noncoding circular RNAs in plants. New Phytol. 208, 88-95
|
Ye, C.Y., Zhang, X.C., Chu, Q.J., Liu, C., Yu, Y.Y., Jiang, W.Q., Zhu, Q.H., Fan, L.J.,Guo, L.B., 2017. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol. 14, 1055-1063
|
Ye, J.Z., Wang, L., Li, S.Z., Zhang, Q.R., Zhang, Q.L., Tang, W.H., Wang, K., Song, K., Sablok, G., Sun, X.Y., et al., 2019. AtCircDB: a tissue-specific database for Arabidopsis circular RNAs. Briefings Bioinf. 20, 58-65
|
Zaccara, S., Ries, R.J.,Jaffrey, S.R., 2019. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608-624
|
Zeng, R.F., Zhou, J.J., Hu, C.G.,Zhang, J.Z., 2018. Transcriptome-wide identification and functional prediction of novel and flowering-related circular RNAs from trifoliate orange (Poncirus trifoliata L. Raf.). Planta 247, 1191-1202
|
Zhang, H., Liu, S., Li, X.Y., Yao, L.J., Wu, H.Y., Baluska, F.,Wan, Y.L., 2021c. An antisense circular RNA regulates expression of RuBisCO small subunit genes in Arabidopsis. Front. Plant Sci. 12, 665014
|
Zhang, J.Y., Hou, L.L., Zuo, Z.Q., Ji, P.F., Zhang, X.R., Xue, Y.C.,Zhao, F.Q., 2021a. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836-845
|
Zhang, J.J., Liu, R.Q., Zhu, Y.F., Gong, J.X., Yin, S.W., Sun, P.S., Feng, H., Wang, Q., Zhao, S.J., Wang, Z.Y., et al., 2020. Identification and characterization of circRNAs responsive to methyl jasmonate in Arabidopsis thaliana. Int. J. Mol. Sci. 21, 792
|
Zhang, P., Fan, Y., Sun, X.P., Chen, L., Terzaghi, W., Bucher, E., Li, L.,Dai, M.Q., 2019. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J. 98, 697-713
|
Zhang, X.O., Wang, H.B., Zhang, Y., Lu, X.H., Chen, L.L.,Yang, L., 2014. Complementary sequence-mediated exon circularization. Cell 159, 134-147
|
Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S.Y., Zhang, J.L., Yang, L.,Chen, L.L., 2016. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611-624
|
Zhang, Y., Zhang, X.O., Chen, T., Xiang, J.F., Yin, Q.F., Xing, Y.H., Zhu, S.S., Yang, L.,Chen, L.L., 2013. Circular intronic long noncoding RNAs. Mol. Cell 51, 792-806
|
Zhang, Z.Y., Wang, H.H., Wang, Y.S., Xi, F.H., Wang, H.Y., Kohnen, M.V., Gao, P.F., Wei, W.T., Chen, K., Liu, X.Q., et al., 2021a. Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth. Plant J. 106, 435-453
|
Zhou, C., Molinie, B., Daneshvar, K., Pondick, J.V., Wang, J.K., Van Wittenberghe, N., Xing, Y., Giallourakis, C.C.,Mullen, A.C., 2017. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20, 2262-2276
|
Zhou, J.P., Yuan, M.Z., Zhao, Y.X., Quan, Q., Yu, D., Yang, H., Tang, X., Xin, X.H., Cai, G.Z., Qian, Q., et al., 2021b. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. Plant Biotechnol. J. 19, 1240-1252
|
Zhou, R., Sanz-Jimenez, P., Zhu, X.T., Feng, J.W., Shao, L., Song, J.M.,Chen, L.L., 2021a. Analysis of rice transcriptome reveals the lncRNA/circRNA regulation in tissue development. Rice 14, 14
|
Zhou, R., Xu, L.P., Zhao, L.P., Wang, Y.L.,Zhao, T.M., 2018a. Genome-wide identification of circRNAs involved in tomato fruit coloration. Biochem. Bioph. Res. Co. 499, 466-469
|
Zhou, R., Zhu, Y.X., Zhao, J., Fang, Z.W., Wang, S.P., Yin, J.L., Chu, Z.H.,Ma, D.F., 2018b. Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum Subspecies brasiliense infection. Int. J. Mol. Sci. 19, 71
|
Zhu, Y.X., Jia, J.H., Yang, L., Xia, Y.C., Zhang, H.L., Jia, J.B., Zhou, R., Nie, P.Y., Yin, J.L., Ma, D.F., et al., 2019. Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol. 19, 164
|
Zuo, J.H., Wang, Q., Zhu, B.Z., Luo, Y.B.,Gao, L.P., 2016. Deciphering the roles of circRNAs on chilling injury in tomato. Biochem. Bioph. Res. Co. 479, 132-138
|