Achour, I., Cavelier, P., Tichit, M., Bouchier, C., Lafaye, P.,Rougeon, F., 2008. Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J Immunol. 181, 2001-2009
|
Brooks, C.L., Rossotti, M.A.,Henry, K.A., 2018. Immunological functions and evolutionary emergence of heavy-chain antibodies. Trends Immunol. 39, 956-960
|
Conrath, K.E., Lauwereys, M., Galleni, M., Matagne, A., Frere, J.M., Kinne, J., Wyns, L.,Muyldermans, S., 2001. β-Lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae. Antimicrob. Agents Chemother. 45, 2807-2812
|
Conrath, K.E., Wernery, U., Muyldermans, S.,Nguyen, V.K., 2003. Emergence and evolution of functional heavy-chain antibodies in Camelidae. Dev. Comp. Immunol. 27, 87-103
|
Daley, L.P., Gagliardo, L.F., Duffy, M.S., Smith, M.C.,Appleton, J.A., 2005. Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new world camelids. Clin. Diagn. Lab. Immunol. 12, 380-386
|
De Genst, E., Saerens, D., Muyldermans, S.,Conrath, K., 2006. Antibody repertoire development in camelids. Dev. Comp. Immunol. 30, 187-198
|
Deiss, T.C., Vadnais, M., Wang, F., Chen, P.L., Torkamani, A., Mwangi, W., Lefranc, M.P., Criscitiello, M.F.,Smider, V.V., 2019. Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies. Cell. Mol. Immunol. 16, 64-75
|
Deschacht, N., De Groeve, K., Vincke, C., Raes, G., De Baetselier, P.,Muyldermans, S., 2010. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol. 184, 5696-5704
|
Georgiou, G., Ippolito, G.C., Beausang, J., Busse, C.E., Wardemann, H.,Quake, S.R., 2014. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158-168
|
Giudicelli, V., Chaume, D.,Lefranc, M.P., 2005. IMGT/GENE-DB:A comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 33, 256-261
|
Gupta, N.T., Vander Heiden, J.A., Uduman, M., Gadala-Maria, D., Yaari, G.,Kleinstein, S.H., 2015. Change-O:a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356-3358
|
Haakenson, J.K., Deiss, T.C., Warner, G.F., Mwangi, W., Criscitiello, M.F.,Smider, V.V., 2019. A broad role for cysteines in bovine antibody diversity. ImmunoHorizons 3, 478-487
|
Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E.B., Bendahman, N.,Hammers, R., 1993. Naturally occurring antibodies devoid of light chains. Nature 363, 446-448
|
Harmsen, M.M., Ruuls, R.C., Nijman, I.J., Niewold, T.A., Frenken, L.G.J.,de Geus, B., 2000. Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol. Immunol. 37, 579-590
|
Henry, K.A.,MacKenzie, C.R., 2018. Antigen recognition by single-domain antibodies:structural latitudes and constraints. mAbs 10, 815-826
|
Ingram, J.R., Schmidt, F.I.,Ploegh, H.L., 2018. Exploiting nanobodies' singular traits. Annu. Rev. Immunol. 36, 695-715
|
Jovcevska, I.,Muyldermans, S., 2020. The therapeutic potential of nanobodies. BioDrugs 34, 11-26
|
Kromann-Hansen, T., Oldenburg, E., Yung, K.W.Y., Ghassabeh, G.H., Muyldermans, S., Declerck, P.J., Huang, M., Andreasen, P.A.,Ngo, J.C.K., 2016. A camelid-derived antibody fragment targeting the active site of a serine protease balances between inhibitor and substrate behavior. J. Biol. Chem. 291, 15156-15168
|
Lauwereys, M., Ghahroudi, M.A., Desmyter, A., Kinne, J., Holzer, W., De Genst, E., Wyns, L.,Muyldermans, S., 1998. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17, 3512-3520
|
Kaas, Q., Duprat, E., Lefranc, M.-p., Pommie, C., Bosc, N., Guiraudou, D., Jean, C., Ruiz, M., Rouard, M.,Foulquier, E., 2005. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev. Comp. Immunol. 29, 185-203
|
Lefranc, M.-P.P., Pommie, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V.,Lefranc, G., 2003. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 27, 55-77
|
Li, X., Duan, X., Yang, K., Zhang, W., Zhang, C., Fu, L., Ren, Z., Wang, C., Wu, J., Lu, R., et al., 2016. Comparative analysis of immune repertoires between Bactrian camel's conventional and heavy-chain antibodies. PLoS ONE 11, 1-15
|
Maass, D.R., Sepulveda, J., Pernthaner, A.,Shoemaker, C.B., 2007. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J. Immunol. Methods 324, 13-25
|
Mendoza, M.N., Jian, M., King, M.T.,Brooks, C.L., 2020. Role of a noncanonical disulfide bond in the stability, affinity, and flexibility of a VHH specific for the Listeria virulence factor InlB. Protein Sci. 29, 1004-1017
|
Ming, L., Wang, Z., Yi, L., Batmunkh, M., Liu, T., Siren, D., He, J., Juramt, N., Jambl, T., Li, Y., et al., 2020. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol. Ecol. Resour. 20, 770-780
|
Muyldermans, S., 2013. Nanobodies:natural single-domain antibodies. Annu. Rev. Biochem. 82, 775-797
|
Muyldermans, S., 2021. Applications of nanobodies. Annu. Rev. Anim. Biosci. 9, 401-421
|
Muyldermans, S., Atarhouch, T., Saldanha, J., Barbosa, J.A.R.G.,Hamers, R., 1994. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. Des. Sel. 7, 1129-1135
|
Nei, M.,Li, W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76, 5269-5273
|
Nguyen, V., Su, C., Muyldermans, S.,Van Der Loo, W., 2002. Heavy-chain antibodies in Camelidae; a case of evolutionary innovation. Immunogenetics 54, 39-47
|
Nguyen, V.K., Desmyter, A.,Muyldermans, S., 2001. Functional heavy-chain antibodies in Camelidae. Adv. Immunol. 79, 261-296
|
Nguyen, V.K., Hamers, R., Wyns, L.,Muyldermans, S., 1999. Loss of splice consensus signal is responsible for the removal of the entire C(H)1 domain of the functional camel IGG2A heavy-chain antibodies. Mol. Immunol. 36, 515-524
|
Nguyen, V.K., Hamers, R., Wyns, L.,Muyldermans, S., 2000. Camel heavy-chain antibodies:Diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J. 19, 921-930
|
Nguyen, V.K., Muyldermans, S.,Hamers, R., 1998. The specific variable domain of camel heavy-chain antibodies is encoded in the germline. J. Mol. Biol. 275, 413-418
|
Paradis, E.,Schliep, K., 2019. Ape 5.0:An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528
|
Pardon, E., Laeremans, T., Triest, S., Rasmussen, S.G.F., Wohlkonig, A., Ruf, A., Muyldermans, S., Hol, W.G.J., Kobilka, B.K.,Steyaert, J., 2014. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9, 674-693
|
Prabakaran, P.,Chowdhury, P.S., 2020. Landscape of non-canonical cysteines in human VH repertoire revealed by immunogenetic analysis. Cell Rep. 31, 107831-107831
|
Schroeder Jr, H.W., Hillson, J.L.,Perlmutter, R.M., 1990. Structure and evolution of mammalian VH families. Int. Immunol. 2, 41-50
|
Su, C., Nguyen, V.K.,Nei, M., 2002. Adaptive evolution of variable region genes encoding an unusual type of immunoglobulin in camelids. Mol. Biol. Evol. 19, 205-215
|
Tillib, S.V., Vyatchanin, A.S.,Muyldermans, S., 2014. Molecular analysis of heavy chain-only antibodies of Camelus bactrianus. Biochemistry (Moscow) 79, 1382-1390
|
Vu, K.B., Ghahroudi, M.A., Wyns, L.,Muyldermans, S., 1997. Comparison of llama V(H) sequences from conventional and heavy chain antibodies. Mol. Immunol. 34, 1121-1131
|
Woolven, B.P., Frenken, L.G.J., van der Logt, P.,Nicholls, P.J., 1999. The structure of the llama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics 50, 98-101
|
Wu, T.T.,Kabat, E.A., 1970. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211-250
|
Xu, J.L.,Davis, M.M., 2000. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13, 37-45
|
Ye, J., Ma, N., Madden, T.L.,Ostell, J.M., 2013. IgBLAST:an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34-W40
|
Yu, G., 2020. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinformatics 69, e96-e96
|