5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 11
Nov.  2022
Turn off MathJax
Article Contents

Single-cell RNA-seq analysis of testicular somatic cell development in pigs

doi: 10.1016/j.jgg.2022.03.014
Funds:

Research Project of Shaanxi Science and Technology Department (2020NY-003) to Tao Zhang.

This study was supported in part by the National Natural Science Foundation of China (31772605)

  • Received Date: 2021-12-04
  • Accepted Date: 2022-03-30
  • Rev Recd Date: 2022-03-26
  • Publish Date: 2022-04-15
  • Spermatogenesis is the process by which diploid male germ cells propagate and differentiate into haploid flagellated spermatozoa. This highly complicated process is dependent on testicular somatic cells maturation. While the role of these somatic cells in spermatogenesis is relatively well established, knowledge about their development and maturation, particularly at the molecular level, is limited. In this study, we profiled the testicular single-cell transcriptomes of Guanzhong black pigs at the age of 7, 30, 60, 90, and 150 days. Five types of Sertoli cells, five types of Leydig cells, and four types of peritubular myoid cells were identified. Histological analysis revealed the changes in proliferation levels and marker gene expressions, and the prion-like protein gene (PRND) was identified as a novel marker for Sertoli cells. Additionally, integrated analyses of porcine and human datasets revealed similarities between human and pig testicular somatic cells. Overall, the data obtained in this study contribute to the understanding of testicular development in pigs as a model species.
  • loading
  • Aerts, S., Quan, X.J., Claeys, A., Naval Sanchez, M., Tate, P., Yan, J.,Hassan, B.A., 2010. Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification. PLoS Biol. 8, e1000435
    Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., et al., 2017. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 14, 1083-1086
    Amezquita, R.A., Lun, A.T.L., Becht, E., Carey, V.J., Carpp, L.N., Geistlinger, L., Marini, F., Rue-Albrecht, K., Risso, D., Soneson, C., et al., 2020. Orchestrating single-cell analysis with Bioconductor. Nat Methods. 17, 137-145
    Avelar, G.F., Oliveira, C.F., Soares, J.M., Silva, I.J., Dobrinski, I., Hess, R.A.,Franca, L.R., 2010. Postnatal somatic cell proliferation and seminiferous tubule maturation in pigs: a non-random event. Theriogenology. 74, 11-23
    Barrionuevo, F., Bagheri-Fam, S., Klattig, J., Kist, R., Taketo, M.M., Englert, C.,Scherer, G., 2006. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod. 74, 195-201
    Bergen, V., Lange, M., Peidli, S., Wolf, F.A.,Theis, F.J., 2020. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 38, 1408-1414
    Chen, H., Ge, R.S.,Zirkin, B.R., 2009. Leydig cells: From stem cells to aging. Mol Cell Endocrinol. 306, 9-16
    Chen, H., Wang, Y., Ge, R.,Zirkin, B.R., 2017. Leydig cell stem cells: Identification, proliferation and differentiation. Mol Cell Endocrinol. 445, 65-73
    de Rooij, D.G., 2017. The nature and dynamics of spermatogonial stem cells. Development. 144, 3022-3030
    Efremova, M., Vento-Tormo, M., Teichmann, S.A.,Vento-Tormo, R., 2020. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 15, 1484-1506
    Eliveld, J., van Daalen, S.K.M., de Winter-Korver, C.M., van der Veen, F., Repping, S., Teerds, K.,van Pelt, A.M.M., 2020. A comparative analysis of human adult testicular cells expressing stem Leydig cell markers in the interstitium, vasculature, and peritubular layer. Andrology. 8, 1265-1276
    Ernst, C., Eling, N., Martinez-Jimenez, C.P., Marioni, J.C.,Odom, D.T., 2019. Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat Commun. 10, 1251
    Fayomi, A.P.,Orwig, K.E., 2018. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 29, 207-214
    Franca, L.R., Hess, R.A., Dufour, J.M., Hofmann, M.C.,Griswold, M.D., 2016. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology. 4, 189-212
    Franca, L.R., Silva, V.A., Jr., Chiarini-Garcia, H., Garcia, S.K.,Debeljuk, L., 2000. Cell proliferation and hormonal changes during postnatal development of the testis in the pig. Biol Reprod. 63, 1629-1636
    Guo, J., Grow, E.J., Mlcochova, H., Maher, G.J., Lindskog, C., Nie, X., Guo, Y., Takei, Y., Yun, J., Cai, L., et al., 2018. The adult human testis transcriptional cell atlas. Cell Res. 28, 1141-1157
    Guo, J., Nie, X., Giebler, M., Mlcochova, H., Wang, Y., Grow, E.J., DonorConnect, Kim, R., Tharmalingam, M., Matilionyte, G., et al., 2020. The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell. 26, 262-276 e264
    Haghverdi, L., Lun, A.T.L., Morgan, M.D.,Marioni, J.C., 2018. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol. 36, 421-427
    Heinrich, A.,DeFalco, T., 2020. Essential roles of interstitial cells in testicular development and function. Andrology. 8, 903-914
    Hemendinger, R.A., Gores, P., Blacksten, L., Harley, V.,Halberstadt, C., 2002. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplant 11, 499-505
    Huhtaniemi, I.,Pelliniemi, L.J., 1992. Fetal Leydig cells: cellular origin, morphology, life span, and special functional features. Proc Soc Exp Biol Med. 201, 125-140
    Kangawa, A., Otake, M., Enya, S., Yoshida, T.,Shibata, M., 2019. Histological Changes of the Testicular Interstitium during Postnatal Development in Microminipigs. Toxicol Pathol. 47, 469-482
    Kobayashi, A., Chang, H., Chaboissier, M.C., Schedl, A.,Behringer, R.R., 2005. Sox9 in testis determination. Ann N Y Acad Sci. 1061, 9-17
    Koskenniemi, J.J., Virtanen, H.E.,Toppari, J., 2017. Testicular growth and development in puberty. Curr Opin Endocrinol Diabetes Obes. 24, 215-224
    Kyronlahti, A., Euler, R., Bielinska, M., Schoeller, E.L., Moley, K.H., Toppari, J., Heikinheimo, M.,Wilson, D.B., 2011. GATA4 regulates Sertoli cell function and fertility in adult male mice. Mol Cell Endocrinol. 333, 85-95
    Lau, X., Munusamy, P., Ng, M.J.,Sangrithi, M., 2020. Single-Cell RNA Sequencing of the Cynomolgus Macaque Testis Reveals Conserved Transcriptional Profiles during Mammalian Spermatogenesis. Dev Cell. 54, 548-566 e547
    Law, N.C.,Oatley, J.M., 2020. Developmental underpinnings of spermatogonial stem cell establishment. Andrology. 8, 852-861
    Lun, A.T., Bach, K.,Marioni, J.C., 2016. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75
    Maeda, Y., Shiratsuchi, A., Namiki, M.,Nakanishi, Y., 2002. Inhibition of sperm production in mice by annexin V microinjected into seminiferous tubules: possible etiology of phagocytic clearance of apoptotic spermatogenic cells and male infertility. Cell Death Differ. 9, 742-749
    Nakagawa, A., Shiratsuchi, A., Tsuda, K.,Nakanishi, Y., 2005. In vivo analysis of phagocytosis of apoptotic cells by testicular Sertoli cells. Mol Reprod Dev. 71, 166-177
    Nef, S.,Parada, L.F., 2000. Hormones in male sexual development. Genes Dev. 14, 3075-3086
    Nestorowa, S., Hamey, F.K., Pijuan Sala, B., Diamanti, E., Shepherd, M., Laurenti, E., Wilson, N.K., Kent, D.G.,Gottgens, B., 2016. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 128, e20-31
    Nurmio, M., Toppari, J., Zaman, F., Andersson, A.M., Paranko, J., Soder, O.,Jahnukainen, K., 2007. Inhibition of tyrosine kinases PDGFR and C-Kit by imatinib mesylate interferes with postnatal testicular development in the rat. Int J Androl. 30, 366-376; discussion 376
    O'Donnell, L., Smith, L.B.,Rebourcet, D., 2021. Sertoli cells as key drivers of testis function. Semin Cell Dev Biol
    O'Shaughnessy, P.J., 2014. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol. 29, 55-65
    Ohta, H., Yabuta, Y., Kurimoto, K., Nakamura, T., Murase, Y., Yamamoto, T.,Saitou, M., 2021. Cyclosporin A and FGF signaling support the proliferation/survival of mouse primordial germ cell-like cells in vitrodagger. Biol Reprod. 104, 344-360
    Okwun, O.E., Igboeli, G., Ford, J.J., Lunstra, D.D.,Johnson, L., 1996. Number and function of Sertoli cells, number and yield of spermatogonia, and daily sperm production in three breeds of boar. J Reprod Fertil. 107, 137-149
    Orth, J.M., Gunsalus, G.L.,Lamperti, A.A., 1988. Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology. 122, 787-794
    Palombi, F., Farini, D., Salanova, M., de Grossi, S.,Stefanini, M., 1992. Development and cytodifferentiation of peritubular myoid cells in the rat testis. Anat Rec. 233, 32-40
    Picelli, S., 2017. Single-cell RNA-sequencing: The future of genome biology is now. RNA Biol. 14, 637-650
    Potter, S.J.,DeFalco, T., 2017. Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction. 153, R151-R162
    Raychoudhury, S.S., Blackshaw, A.W.,Irving, M.G., 1993. Hormonal modulation of the interactions of cultured rat testicular Sertoli and peritubular myoid cells. Effects on glycosaminoglycan synthesis. J Androl. 14, 9-16
    Raychoudhury, S.S., Irving, M.G., Thompson, E.W.,Blackshaw, A.W., 1992. Collagen biosynthesis in cultured rat testicular Sertoli and peritubular myoid cells. Life Sci. 51, 1585-1596
    Rossi, P., 2013. Transcriptional control of KIT gene expression during germ cell development. Int J Dev Biol. 57, 179-184
    Rossi, P.,Dolci, S., 2013. Paracrine mechanisms involved in the control of early stages of Mammalian spermatogenesis. Front Endocrinol. (Lausanne) 4, 181
    Sharpe, R.M., Maguire, S.M., Saunders, P.T., Millar, M.R., Russell, L.D., Ganten, D., Bachmann, S., Mullins, L.,Mullins, J.J., 1995. Infertility in a transgenic rat due to impairment of cytoplasmic elimination and sperm release from the Sertoli cells. Biol Reprod. 53, 214-226
    Sharpe, R.M., Turner, K.J., McKinnell, C., Groome, N.P., Atanassova, N., Millar, M.R., Buchanan, D.L.,Cooke, P.S., 1999. Inhibin B levels in plasma of the male rat from birth to adulthood: effect of experimental manipulation of Sertoli cell number. J Androl. 20, 94-101
    Simorangkir, D.R., Ramaswamy, S., Marshall, G.R., Roslund, R.,Plant, T.M., 2012. Sertoli cell differentiation in rhesus monkey (Macaca mulatta) is an early event in puberty and precedes attainment of the adult complement of undifferentiated spermatogonia. Reproduction. 143, 513-522
    Skinner, M.K., Norton, J.N., Mullaney, B.P., Rosselli, M., Whaley, P.D.,Anthony, C.T., 1991. Cell-cell interactions and the regulation of testis function. Ann N Y Acad Sci. 637, 354-363
    Sohni, A., Tan, K., Song, H.W., Burow, D., de Rooij, D.G., Laurent, L., Hsieh, T.C., Rabah, R., Hammoud, S.S., Vicini, E., et al., 2019. The Neonatal and Adult Human Testis Defined at the Single-Cell Level. Cell Rep. 26, 1501-1517 e1504
    Stanton, P.G., 2016. Regulation of the blood-testis barrier. Semin Cell Dev Biol. 59, 166-173
    Sullivan, T.P., Eaglstein, W.H., Davis, S.C.,Mertz, P., 2001. The pig as a model for human wound healing. Wound Repair Regen. 9, 66-76
    Swanlund, D.J., N'Diaye, M.R., Loseth, K.J., Pryor, J.L.,Crabo, B.G., 1995. Diverse testicular responses to exogenous growth hormone and follicle-stimulating hormone in prepubertal boars. Biol Reprod. 53, 749-757
    Thompson, E.W., Blackshaw, A.W.,Raychoudhury, S.S., 1995. Secreted products and extracellular matrix from testicular peritubular myoid cells influence androgen-binding protein secretion by Sertoli cells in culture. J Androl. 16, 28-35
    Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al., 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 352, 189-196
    Traag, V.A., Waltman, L.,van Eck, N.J., 2019. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 9, 5233
    Tran, D., Meusy-Dessolle, N.,Josso, N., 1981. Waning of anti-mullerian activity: an early sign of sertoli cell maturation in the developing pig. Biol Reprod. 24, 923-931
    Valent, D., Arroyo, L., Fabrega, E., Font, I.F.M., Rodriguez-Palmero, M., Moreno-Munoz, J.A., Tibau, J.,Bassols, A., 2020. Effects of a high-fat-diet supplemented with probiotics and omega3-fatty acids on appetite regulatory neuropeptides and neurotransmitters in a pig model. Benef Microbes. 11, 347-359
    Wolf, F.A., Angerer, P.,Theis, F.J., 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15
    Wolf, F.A., Hamey, F.K., Plass, M., Solana, J., Dahlin, J.S., Gottgens, B., Rajewsky, N., Simon, L.,Theis, F.J., 2019. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59
    Ye, L., Li, X., Li, L., Chen, H.,Ge, R.S., 2017. Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells. Front Physiol. 8, 430
    Zhang, L., Li, F., Lei, P., Guo, M., Liu, R., Wang, L., Yu, T., Lv, Y., Zhang, T., Zeng, W., et al., 2021. Single-cell RNA-sequencing reveals the dynamic process and novel markers in porcine spermatogenesis. J Anim Sci Biotechnol. 12, 122
    Zhang, P., Chen, X., Zheng, Y., Zhu, J., Qin, Y., Lv, Y.,Zeng, W., 2017. Long-term propagation of porcine undifferentiated spermatogonia. Stem Cells Dev. 26, 1121-1131
    Zhao, L., Yao, C., Xing, X., Jing, T., Li, P., Zhu, Z., Yang, C., Zhai, J., Tian, R., Chen, H., et al., 2020. Single-cell analysis of developing and azoospermia human testicles reveals central role of Sertoli cells. Nat Commun. 11, 5683
    Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C.,Chanda, S.K., 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 10, 1523
    Zirkin, B.R.,Papadopoulos, V., 2018. Leydig cells: formation, function, and regulation. Biol Reprod. 99, 101-111
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (302) PDF downloads (40) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return