5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

Sources of transcription variation in Plasmodium falciparum

doi: 10.1016/j.jgg.2022.03.008
Funds:

Lindsey B. Turnbull and Katrina A. Button-Simons were supported by Eck Institute for Global Health Fellowships. This work was supported by the Indiana Clinical and Translational Sciences Institute (UL1TR001108) from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award and with the support from the Center for Quantitative Biology (P50 GM071508). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

  • Received Date: 2021-11-18
  • Accepted Date: 2022-03-22
  • Rev Recd Date: 2022-03-21
  • Publish Date: 2022-04-06
  • Variation in transcript abundance can contribute to both short-term environmental response and long-term evolutionary adaptation. Most studies are designed to assess differences in mean transcription levels and do not consider other potentially important and confounding sources of transcriptional variation. Detailed quantification of variation sources will improve our ability to detect and identify the mechanisms that contribute to genome-wide transcription changes that underpin adaptive responses. To quantify innate levels of expression variation, we measured mRNA levels for more than 5000 genes in the malaria parasite, Plasmodium falciparum, among clones derived from two parasite strains across biologically and experimentally replicated batches. Using a mixed effects model, we partitioned the total variation among four sources—between strain, within strain, environmental batch effects, and stochastic noise. We found 646 genes with significant variation attributable to at least one of these sources. These genes were categorized by their predominant variation source and further examined using gene ontology enrichment analysis to associate function with each source of variation. Genes with environmental batch effect and within strain transcript variation may contribute to phenotypic plasticity, while genes with between strain variation may contribute to adaptive responses and processes that lead to parasite strain-specific survival under varied conditions.
  • loading
  • Acar, M., Mettetal, J.T.,van Oudenaarden, A., 2008. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471-475
    Anderson, T.J., 2004. Mapping drug resistance genes in plasmodium falciparum by genomewide association. Curr. Drug Targets-Infect. Disord. 4, 65-78
    Ansel, J., Bottin, H., Rodriguez-Beltran, C., Damon, C., Nagarajan, M., Fehrmann, S., Francois, J.,Yvert, G., 2008. Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet. 4, e1000049
    Ay, F., Bunnik, E.M., Varoquaux, N., Vert, J.P., Noble, W.S.,Le Roch, K.G., 2015. Multiple dimensions of epigenetic gene regulation in the malaria parasite plasmodium falciparum:gene regulation via histone modifications, nucleosome positioning and nuclear architecture in p. Falciparum. BioEssays 37, 182-194
    Bozdech, Z., Llinas, M., Pulliam, B.L., Wong, E.D., Zhu, J.,DeRisi, J.L., 2003. The transcriptome of the intraerythrocytic developmental cycle of plasmodium falciparum. PLoS Biol. 1, e5
    Callebaut, I., Prat, K., Meurice, E., Mornon, J.-P.,Tomavo, S., 2005. Prediction of the general transcription factors associated with rna polymerase ii in plasmodium falciparum:conserved features and differences relative to other eukaryotes. BMC Genom. 6, 1-20
    Campbell, T.L., De Silva, E.K., Olszewski, K.L., Elemento, O.,Llinas, M., 2010. Identification and genome-wide prediction of DNA binding specificities for the apiap2 family of regulators from the malaria parasite. PLoS Pathog. 6, e1001165
    Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S.,Young, R.A., 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323-337
    Daily, J.a., Scanfeld, D., Pochet, N., Le Roch, K., Plouffe, D., Kamal, M., Sarr, O., Mboup, S., Ndir, O.,Wypij, D., 2007. Distinct physiological states of plasmodium falciparum in malaria-infected patients. Nature 450, 1091
    De Silva, E.K., Gehrke, A.R., Olszewski, K., Leon, I., Chahal, J.S., Bulyk, M.L.,Llinas, M., 2008. Specific DNA-binding by apicomplexan ap2 transcription factors. Proc. Natl. Acad. Sci. Unit. States Am. 105, 8393-8398
    Eastman, R.T., Dharia, N.V., Winzeler, E.A.,Fidock, D.A., 2011. Piperaquine resistance is associated with a copy number variation on chromosome 5 in drug-pressured plasmodium falciparum parasites. Antimicrob. Agents Chemother. 55, 3908-3916
    Eldar, A.,Elowitz, M.B., 2010. Functional roles for noise in genetic circuits. Nature 467, 167-173
    Flueck, C., Bartfai, R., Volz, J., Niederwieser, I., Salcedo-Amaya, A.M., Alako, B.T., Ehlgen, F., Ralph, S.A., Cowman, A.F., Bozdech, Z., et al., 2009. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog. 5, e1000569
    Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., Carlton, J.M., Pain, A., Nelson, K.E.,Bowman, S., 2002. Genome sequence of the human malaria parasite plasmodium falciparum. Nature 419, 498
    Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D.,Brown, P.O., 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241-4257
    Girardot, F., Monnier, V.,Tricoire, H., 2004. Genome wide analysis of common and specific stress responses in adult drosophila melanogaster. BMC Genom. 5, 74
    Gomez-Diaz, E., Yerbanga, R.S., Lefevre, T., Cohuet, A., Rowley, M.J., Ouedraogo, J.B.,Corces, V.G., 2017. Epigenetic regulation of plasmodium falciparum clonally variant gene expression during development in anopheles gambiae. Sci. Rep. 7, 40655
    Hruschka, D.J., Kohrt, B.A.,Worthman, C.M., 2005. Estimating between-and within-individual variation in cortisol levels using multilevel models. Psychoneuroendocrinology 30, 698-714
    Ito, Y., Toyota, H., Kaneko, K.,Yomo, T., 2009. How selection affects phenotypic fluctuation. Mol. Syst. Biol. 5, 264
    Jimenez-Gomez, J.M., Corwin, J.A., Joseph, B., Maloof, J.N.,Kliebenstein, D.J., 2011. Genomic analysis of qtls and genes altering natural variation in stochastic noise. PLoS Genet. 7, e1002295
    Keren, L., Van Dijk, D., Weingarten-Gabbay, S., Davidi, D., Jona, G., Weinberger, A., Milo, R.,Segal, E., 2015. Noise in gene expression is coupled to growth rate. Genome research, gr. 191635.191115
    Le Roch, K.G., Zhou, Y., Blair, P.L., Grainger, M., Moch, J.K., Haynes, J.D., De La Vega, P., Holder, A.A., Batalov, S., Carucci, D.J., et al., 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503-1508
    Llinas, M., Bozdech, Z., Wong, E.D., Adai, A.T.,DeRisi, J.L., 2006. Comparative whole genome transcriptome analysis of three plasmodium falciparum strains. Nucleic Acids Res. 34, 1166-1173
    Lopez-Rubio, J.J., Mancio-Silva, L.,Scherf, A., 2009. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5, 179-190
    Martins, R.M., Macpherson, C.R., Claes, A., Scheidig-Benatar, C., Sakamoto, H., Yam, X.Y., Preiser, P., Goel, S., Wahlgren, M.,Sismeiro, O., 2017. An apiap2 member regulates expression of clonally variant genes of the human malaria parasite plasmodium falciparum. Sci. Rep. 7, 14042
    Miles, A., Iqbal, Z., Vauterin, P., Pearson, R., Campino, S., Theron, M., Gould, K., Mead, D., Drury, E.,O'Brien, J., 2016. Indels, Structural Variation, and Recombination Drive Genomic Diversity in Plasmodium Falciparum. Genome research
    Milner Jr, D.A., Pochet, N., Krupka, M., Williams, C., Seydel, K., Taylor, T.E., Van de Peer, Y., Regev, A., Wirth, D.,Daily, J.P., 2012. Transcriptional profiling of plasmodium falciparum parasites from patients with severe malaria identifies distinct low vs. High parasitemic clusters. PLoS One 7, e40739
    Modrzynska, K., Pfander, C., Chappell, L., Yu, L., Suarez, C., Dundas, K., Gomes, A.R., Goulding, D., Rayner, J.C.,Choudhary, J., 2017. A knockout screen of apiap2 genes reveals networks of interacting transcriptional regulators controlling the plasmodium life cycle. Cell Host Microbe 21, 11-22
    Mok, S., Ashley, E.A., Ferreira, P.E., Zhu, L., Lin, Z., Yeo, T., Chotivanich, K., Imwong, M., Pukrittayakamee, S.,Dhorda, M., 2014. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science, 1260403
    Oduola, A.M., Milhous, W., Weatherly, N., Bowdre, J.,Desjardins, R., 1988. Plasmodium falciparum:induction of resistance to mefloquine in cloned strains by continuous drug exposure in vitro. Exp. Parasitol. 67, 354-360
    Painter, H.J., Campbell, T.L.,Llinas, M., 2011. The apicomplexan ap2 family:integral factors regulating plasmodium development. Mol. Biochem. Parasitol. 176, 1-7
    Reid, A.J., Talman, A.M., Bennett, H.M., Gomes, A.R., Sanders, M.J., Illingworth, C.J., Billker, O., Berriman, M.,Lawniczak, M.K., 2018. Single-cell rna-seq reveals hidden transcriptional variation in malaria parasites. Elife 7, e33105
    Reilly Ayala, H.B., Wacker, M.A., Siwo, G.,Ferdig, M.T., 2010. Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in plasmodium falciparum. BMC Genom. 11, 577
    Reilly, H.B., Wang, H., Steuter, J.A., Marx, A.M.,Ferdig, M.T., 2007. Quantitative dissection of clone-specific growth rates in cultured malaria parasites. Int. J. Parasitol. 37, 1599-1607
    Rovira-Graells, N., Gupta, A.P., Planet, E., Crowley, V.M., Mok, S., Ribas de Pouplana, L., Preiser, P.R., Bozdech, Z.,Cortes, A., 2012. Transcriptional variation in the malaria parasite plasmodium falciparum. Genome Res. 22, 925-938
    Scherf, A., Lopez-Rubio, J.J.,Riviere, L., 2008. Antigenic variation in plasmodium falciparum. Annu. Rev. Microbiol. 62, 445-470
    Seco-Hidalgo, V., Osuna, A.,De Pablos, L.M., 2015. To bet or not to bet:deciphering cell to cell variation in protozoan infections. Trends Parasitol. 31, 350-356
    Siwo, G.H., Smith, R.S., Tan, A., Button-Simons, K.A., Checkley, L.A.,Ferdig, M.T., 2015a. An integrative analysis of small molecule transcriptional responses in the human malaria parasite plasmodium falciparum. BMC Genom. 16, 1030
    Siwo, G.H., Tan, A., Button-Simons, K.A., Samarakoon, U., Checkley, L.A., Pinapati, R.S.,Ferdig, M.T., 2015b. Predicting functional and regulatory divergence of a drug resistance transporter gene in the human malaria parasite. BMC Genom. 16, 115
    Stranger, B.E., Forrest, M.S., Dunning, M., Ingle, C.E., Beazley, C., Thorne, N., Redon, R., Bird, C.P., De Grassi, A.,Lee, C., 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848-853
    Su, X.Z.,Wootton, J.C., 2004. Genetic mapping in the human malaria parasite plasmodium falciparum. Mol. Microbiol. 53, 1573-1582
    Trager, W.,Jensen, J.B., 1976. Human malaria parasites in continuous culture. Science 193, 673-675
    Turnbull, L.B., Siwo, G.H., Button-Simons, K.A., Tan, A., Checkley, L.A., Painter, H.J., Llinas, M.,Ferdig, M.T., 2017. Simultaneous genome-wide gene expression and transcript isoform profiling in the human malaria parasite. PLoS One 12, e0187595
    Wootton, J.C., Feng, X., Ferdig, M.T., Cooper, R.A., Mu, J., Baruch, D.I., Magill, A.J.,Su, X.-z., 2002. Genetic diversity and chloroquine selective sweeps in plasmodium falciparum. Nature 418, 320
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (234) PDF downloads (9) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return