5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells

doi: 10.1016/j.jgg.2022.03.007
Funds:

Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (2018GZR110104004).

The authors thank Peiran Hu and Nannan Li at the Embryo Engineering Center for critical technical assistance. This work was supported by the National Key Research and Development Program of China Stem Cell and Translational Research (2019YFA0110700), the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_16R32), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030501, XDA16030503), and Key Research &

  • Received Date: 2021-10-20
  • Accepted Date: 2022-03-22
  • Rev Recd Date: 2022-03-06
  • Publish Date: 2022-04-11
  • CRISPR/Cas9 system is a robust genome editing platform in biotechnology and medicine. However, it generally produces small insertions/deletions (indels, typically 1–3 bp) but rarely induces larger deletions in specific target sites. Here, we report a cytidine deaminase-Cas9 fusion-induced deletion system (C-DEL) and an adenine deaminase-Cas9 fusion-induced deletion system (A-DEL) by combining Cas9 with rat APOBEC1 (rA1) and TadA 8e, respectively. Both C-DEL and A-DEL improve the efficiency of deletions compared with the conventional Cas9 system in human cells. In addition, the C-DEL system generates a considerable fraction of predictable multinucleotide deletions from 5′-deaminated C bases to the Cas9-cleavage site and increases the proportion of larger deletions at the target loci. Taken together, the C-DEL and A-DEL systems provide a practical strategy for producing efficient multinucleotide deletions, expanding the CRISPR/Cas9 toolsets for gene modifications in human cells.
  • loading
  • Bae, S., Park, J.,Kim, J.S., 2014. Cas-OFFinder:a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England) 30, 1473-1475
    Chatterjee, P., Jakimo, N.,Jacobson, J.M., 2018. Minimal PAM specificity of a highly similar SpCas9 ortholog. Science advances 4, eaau0766
    Chen, L., Park, J.E., Paa, P., Rajakumar, P.D., Prekop, H.T., Chew, Y.T., Manivannan, S.N.,Chew, W.L., 2021. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nature communications 12, 1384
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339, 819-823
    Dalhus, B., Alseth, I.,Bjoeras, M., 2015. Structural basis for incision at deaminated adenines in DNA and RNA by endonuclease V. Progress in biophysics and molecular biology 117, 134-142
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I.,Liu, D.R., 2017. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471
    Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L.,Joung, J.K., 2018. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nature biotechnology 36, 977-982
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A.,Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 337, 816-821
    Kim, D., Kim, D.E., Lee, G., Cho, S.I.,Kim, J.S., 2019a. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nature biotechnology 37, 430-435
    Kim, D., Luk, K., Wolfe, S.A.,Kim, J.S., 2019b. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annual review of biochemistry 88, 191-220
    Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T.,Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature biotechnology 35, 371-376
    Knott, G.J.,Doudna, J.A., 2018. CRISPR-Cas guides the future of genetic engineering. Science (New York, NY) 361, 866-869
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A.,Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424
    Kurt, I.C., Zhou, R., Iyer, S., Garcia, S.P., Miller, B.R., Langner, L.M., Grunewald, J.,Joung, J.K., 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature biotechnology 39, 41-46
    Lau, A.Y., Wyatt, M.D., Glassner, B.J., Samson, L.D.,Ellenberger, T., 2000. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proceedings of the National Academy of Sciences of the United States of America 97, 13573-13578
    Lee, C., Hyun Jo, D., Hwang, G.H., Yu, J., Kim, J.H., Park, S.E., Kim, J.S., Kim, J.H.,Bae, S., 2019. CRISPR-Pass:Gene Rescue of Nonsense Mutations Using Adenine Base Editors. Molecular therapy:the journal of the American Society of Gene Therapy 27, 1364-1371
    Lee, S., Ding, N., Sun, Y., Yuan, T., Li, J., Yuan, Q., Liu, L., Yang, J., Wang, Q., Kolomeisky, A.B., et al., 2020. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Science advances 6, eaba1773
    Lin, Q., Zhu, Z., Liu, G., Sun, C., Lin, D., Xue, C., Li, S., Zhang, D., Gao, C., Wang, Y., et al., 2021. Genome editing in plants with MAD7 nuclease. Journal of genetics and genomics=Yi chuan xue bao 48, 444-451
    Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C.,Wang, K., 2019. Hi-TOM:a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life sciences 62, 1-7
    Liu, Z., Chen, S., Shan, H., Jia, Y., Chen, M., Song, Y., Lai, L.,Li, Z., 2020a. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell death & disease 11, 36
    Liu, Z., Chen, S., Shan, H., Jia, Y., Chen, M., Song, Y., Lai, L.,Li, Z., 2020b. Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. BMC biology 18, 111
    Long, C., Amoasii, L., Mireault, A.A., McAnally, J.R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J.M., Bassel-Duby, R.,Olson, E.N., 2016. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science (New York, NY) 351, 400-403
    Min, Y.L., Chemello, F., Li, H., Rodriguez-Caycedo, C., Sanchez-Ortiz, E., Mireault, A.A., McAnally, J.R., Shelton, J.M., Zhang, Y., Bassel-Duby, R., et al., 2020. Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing. Molecular therapy:the journal of the American Society of Gene Therapy 28, 2044-2055
    Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., Noda, T., Abudayyeh, O.O., Gootenberg, J.S., Mori, H., et al., 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science (New York, NY) 361, 1259-1262
    Rees, H.A.,Liu, D.R., 2018. Base editing:precision chemistry on the genome and transcriptome of living cells. Nature reviews Genetics 19, 770-788
    Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan, L.W., Zeng, J., Bauer, D.E., et al., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature biotechnology
    Song, Y., Yuan, L., Wang, Y., Chen, M., Deng, J., Lv, Q., Sui, T., Li, Z.,Lai, L., 2016. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cellular and molecular life sciences:CMLS 73, 2959-2968
    Walton, R.T., Christie, K.A., Whittaker, M.N.,Kleinstiver, B.P., 2020. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science (New York, NY) 368, 290-296
    Wang, S., Zong, Y., Lin, Q., Zhang, H., Chai, Z., Zhang, D., Chen, K., Qiu, J.L.,Gao, C., 2020. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nature biotechnology 38, 1460-1465
    Wu, Y., Yuan, Q., Zhu, Y., Gao, X., Song, J.,Yin, Z., 2020. Improving FnCas12a Genome Editing by Exonuclease Fusion. Crispr j 3, 503-511
    Yu, W., Li, J., Huang, S., Li, X., Li, P., Li, G., Liang, A., Chi, T.,Huang, X., 2021. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences. BMC biology 19, 34
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771
    Zhang, Q., Yin, K., Liu, G., Li, S., Li, M.,Qiu, J.L., 2020. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Science China Life sciences 63, 1918-1927
    Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M.A., Rosser, S.J., Bi, C.,Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nature biotechnology 39, 35-40
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (298) PDF downloads (16) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return