5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 12
Dec.  2022
Turn off MathJax
Article Contents

Recombination and mutation shape variations in the major histocompatibility complex

doi: 10.1016/j.jgg.2022.03.006
Funds:

This research was supported by grants from the National Key Basic Research Development Program of China (grants No. 2009CB522401 and 2003CB515509, and AWS14C014) to Y. X. and Y. S. We would like to thank Hongzhi Cao, Xuehan Zhuang, Tao Zhang, Xiaomin Liu, Xiao Liu, Yuanwei Zhang, Rui Ye, Hui Jiang, Jing Hua Wu, and Xun Xu at the BGI-Shenzhen for their assistance with the sequencing and bioinformatics analysis.

  • Received Date: 2021-09-18
  • Accepted Date: 2022-03-08
  • Rev Recd Date: 2022-03-07
  • Publish Date: 2022-03-28
  • The major histocompatibility complex (MHC) is closely associated with numerous diseases, but its high degree of polymorphism complicates the discovery of disease-associated variants. In principle, recombination and de novo mutations are two critical factors responsible for MHC polymorphisms. However, direct evidence for this hypothesis is lacking. Here, we report the generation of fine-scale MHC recombination and de novo mutation maps of ∼5 Mb by deep sequencing (> 100×) of the MHC genome for 17 MHC recombination and 30 non-recombination Han Chinese families (a total of 190 individuals). Recombination hotspots and Han-specific breakpoints are located in close proximity at haplotype block boundaries. The average MHC de novo mutation rate is higher than the genome-wide de novo mutation rate, particularly in MHC recombinant individuals. Notably, mutation and recombination generated polymorphisms are located within and outside linkage disequilibrium regions of the MHC, respectively, and evolution of the MHC locus was mainly controlled by positive selection. These findings provide insights on the evolutionary causes of the MHC diversity and may facilitate the identification of disease-associated genetic variants.
  • loading
  • Allcock, R.J., 2012. The major histocompatibility complex: a paradigm for studies of the human genome. Methods. Mol. Biol. 882, 1-7
    Allcock, R.J., Atrazhev, A.M., Beck, S., de Jong, P.J., Elliott, J.F., Forbes, S., Halls, K., Horton, R., Osoegawa, K., Rogers, J., Sawcer, S., Todd, J.A., Trowsdale, J., Wang, Y., Williams, S., 2002. The MHC haplotype project: a resource for HLA-linked association studies. Tissue Antigens 59, 520-521
    Barrett, J.C., Fry, B., Maller, J., Daly, M.J., 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265
    Baudat, F., Buard, J., Grey, C., Fledel-Alon, A., Ober, C., Przeworski, M., Coop, G., de Massy, B., 2010. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836-840
    Berg, I.L., Neumann, R., Lam, K.W., Sarbajna, S., Odenthal-Hesse, L., May, C.A., Jeffreys, A.J., 2010. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat. Genet. 42, 859-863
    Blaha, D.T., Anderson, S.D., Yoakum, D.M., Hager, M.V., Zha, Y., Gajewski, T.F., Kranz, D.M., 2019. High-throughput stability screening of neoantigen/HLA complexes improves immunogenicity predictions. Cancer Immunol. Res. 7, 50-61
    Browning, S.R., Browning, B.L., 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084-1097
    Cao, H., Wu, J., Wang, Y., Jiang, H., Zhang, T., Liu, X., Xu, Y., Liang, D., Gao, P., Sun, Y., Gifford, B., D'Ascenzo, M., Liu, X., Tellier, L.C., Yang, F., Tong, X., Chen, D., Zheng, J., Li, W., Richmond, T., Xu, X., Wang, J., Li, Y., 2013. An integrated tool to study MHC region: accurate SNV detection and HLA genes typing in human MHC region using targeted high-throughput sequencing. PLoS One 8, e69388
    Carrington, M., 1999. Recombination within the human MHC. Immunol. Rev. 167, 245-256
    Conrad, D.F., Keebler, J.E., DePristo, M.A., Lindsay, S.J., Zhang, Y., Casals, F., Idaghdour, Y., Hartl, C.L., Torroja, C., Garimella, K.V., Zilversmit, M., Cartwright, R., Rouleau, G.A., Daly, M., Stone, E.A., Hurles, M.E., Awadalla, P., Genomes, P., 2011. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712-714
    Coop, G., Wen, X., Ober, C., Pritchard, J.K., Przeworski, M., 2008. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395-1398
    Cullen, M., Perfetto, S.P., Klitz, W., Nelson, G., Carrington, M., 2002. High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am. J. Hum. Genet. 71, 759-776
    de Bakker, P.I., McVean, G., Sabeti, P.C., Miretti, M.M., Green, T., Marchini, J., Ke, X., Monsuur, A.J., Whittaker, P., Delgado, M., Morrison, J., Richardson, A., Walsh, E.C., Gao, X., Galver, L., Hart, J., Hafler, D.A., Pericak-Vance, M., Todd, J.A., Daly, M.J., Trowsdale, J., Wijmenga, C., Vyse, T.J., Beck, S., Murray, S.S., Carrington, M., Gregory, S., Deloukas, P., Rioux, J.D., 2006. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38, 1166-1172
    de Bakker, P.I., Yelensky, R., Pe'er, I., Gabriel, S.B., Daly, M.J., Altshuler, D., 2005. Efficiency and power in genetic association studies. Nat. Genet. 37, 1217-1223
    Dendrou, C.A., Petersen, J., Rossjohn, J., Fugger, L., 2018. HLA variation and disease. Nat. Rev. Immunol. 18, 325-339
    Excoffier, L., Laval, G., Schneider, S., 2007. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47-50
    Francioli, L.C., Polak, P.P., Koren, A., Menelaou, A., Chun, S., Renkens, I., Genome of the Netherlands, C., van Duijn, C.M., Swertz, M., Wijmenga, C., van Ommen, G., Slagboom, P.E., Boomsma, D.I., Ye, K., Guryev, V., Arndt, P.F., Kloosterman, W.P., de Bakker, P.I.W., Sunyaev, S.R., 2015. Genome-wide patterns and properties of de novo mutations in humans. Nat. Genet. 47, 822-826
    Fry, B.J., 2005. Computational information design
    Gragert, L., Madbouly, A., Freeman, J., Maiers, M., 2013. Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum. Immunol. 74, 1313-1320
    Hinch, A.G., Tandon, A., Patterson, N., Song, Y., Rohland, N., Palmer, C.D., Chen, G.K., Wang, K., Buxbaum, S.G., Akylbekova, E.L., Aldrich, M.C., Ambrosone, C.B., Amos, C., Bandera, E.V., Berndt, S.I., Bernstein, L., Blot, W.J., Bock, C.H., Boerwinkle, E., Cai, Q., Caporaso, N., Casey, G., Cupples, L.A., Deming, S.L., Diver, W.R., Divers, J., Fornage, M., Gillanders, E.M., Glessner, J., Harris, C.C., Hu, J.J., Ingles, S.A., Isaacs, W., John, E.M., Kao, W.H., Keating, B., Kittles, R.A., Kolonel, L.N., Larkin, E., Le Marchand, L., McNeill, L.H., Millikan, R.C., Murphy, A., Musani, S., Neslund-Dudas, C., Nyante, S., Papanicolaou, G.J., Press, M.F., Psaty, B.M., Reiner, A.P., Rich, S.S., Rodriguez-Gil, J.L., Rotter, J.I., Rybicki, B.A., Schwartz, A.G., Signorello, L.B., Spitz, M., Strom, S.S., Thun, M.J., Tucker, M.A., Wang, Z., Wiencke, J.K., Witte, J.S., Wrensch, M., Wu, X., Yamamura, Y., Zanetti, K.A., Zheng, W., Ziegler, R.G., Zhu, X., Redline, S., Hirschhorn, J.N., Henderson, B.E., Taylor, H.A., Jr., Price, A.L., Hakonarson, H., Chanock, S.J., Haiman, C.A., Wilson, J.G., Reich, D., Myers, S.R., 2011. The landscape of recombination in African Americans. Nature 476, 170-175
    Horton, R., Gibson, R., Coggill, P., Miretti, M., Allcock, R.J., Almeida, J., Forbes, S., Gilbert, J.G., Halls, K., Harrow, J.L., Hart, E., Howe, K., Jackson, D.K., Palmer, S., Roberts, A.N., Sims, S., Stewart, C.A., Traherne, J.A., Trevanion, S., Wilming, L., Rogers, J., de Jong, P.J., Elliott, J.F., Sawcer, S., Todd, J.A., Trowsdale, J., Beck, S., 2008. Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 60, 1-18
    Jeffreys, A.J., Kauppi, L., Neumann, R., 2001. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217-222
    Jeffreys, A.J., May, C.A., 2004. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat. Genet. 36, 151-156
    Jonsson, H., Sulem, P., Kehr, B., Kristmundsdottir, S., Zink, F., Hjartarson, E., Hardarson, M.T., Hjorleifsson, K.E., Eggertsson, H.P., Gudjonsson, S.A., Ward, L.D., Arnadottir, G.A., Helgason, E.A., Helgason, H., Gylfason, A., Jonasdottir, A., Jonasdottir, A., Rafnar, T., Frigge, M., Stacey, S.N., Th Magnusson, O., Thorsteinsdottir, U., Masson, G., Kong, A., Halldorsson, B.V., Helgason, A., Gudbjartsson, D.F., Stefansson, K., 2017. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519-522
    Kishore, A., Petrek, M., 2018. Next-generation sequencing based HLA typing: deciphering immunogenetic aspects of sarcoidosis. Front Genet. 9, 503
    Knight, J., Spain, S.L., Capon, F., Hayday, A., Nestle, F.O., Clop, A., Wellcome Trust Case Control, C., Genetic Analysis of Psoriasis, C., Consortium, I.c.f.P., Barker, J.N., Weale, M.E., Trembath, R.C., 2012. Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis. Hum. Mol. Genet. 21, 5185-5192
    Kong, A., Frigge, M.L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S.A., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Wong, W.S., Sigurdsson, G., Walters, G.B., Steinberg, S., Helgason, H., Thorleifsson, G., Gudbjartsson, D.F., Helgason, A., Magnusson, O.T., Thorsteinsdottir, U., Stefansson, K., 2012. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471-475
    Kong, A., Thorleifsson, G., Gudbjartsson, D.F., Masson, G., Sigurdsson, A., Jonasdottir, A., Walters, G.B., Jonasdottir, A., Gylfason, A., Kristinsson, K.T., Gudjonsson, S.A., Frigge, M.L., Helgason, A., Thorsteinsdottir, U., Stefansson, K., 2010. Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467, 1099-1103
    Koskela, S., Ritari, J., Hyvarinen, K., Kwan, T., Niittyvuopio, R., Itala-Remes, M., Pastinen, T., Partanen, J., 2018. Hidden genomic MHC disparity between HLA-matched sibling pairs in hematopoietic stem cell transplantation. Sci. Rep. 8, 5396
    Lechler, R., Warrens, A., 1999. HLA in health & disease
    Liu, X., Ong, R.T., Pillai, E.N., Elzein, A.M., Small, K.S., Clark, T.G., Kwiatkowski, D.P., Teo, Y.Y., 2013. Detecting and characterizing genomic signatures of positive selection in global populations. Am. J. Hum. Genet. 92, 866-881
    Lobkovsky, A.E., Levi, L., Wolf, Y.I., Maiers, M., Gragert, L., Alter, I., Louzoun, Y., Koonin, E.V., 2019. Multiplicative fitness, rapid haplotype discovery, and fitness decay explain evolution of human MHC. Proc. Natl. Acad. Sci. U S A 116, 14098-14104
    McVean, G.A., Myers, S.R., Hunt, S., Deloukas, P., Bentley, D.R., Donnelly, P., 2004. The fine-scale structure of recombination rate variation in the human genome. Science 304, 581-584
    Miretti, M.M., Walsh, E.C., Ke, X., Delgado, M., Griffiths, M., Hunt, S., Morrison, J., Whittaker, P., Lander, E.S., Cardon, L.R., Bentley, D.R., Rioux, J.D., Beck, S., Deloukas, P., 2005. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am. J. Hum. Genet. 76, 634-646
    Morishima, Y., Kashiwase, K., Matsuo, K., Azuma, F., Morishima, S., Onizuka, M., Yabe, T., Murata, M., Doki, N., Eto, T., Mori, T., Miyamura, K., Sao, H., Ichinohe, T., Saji, H., Kato, S., Atsuta, Y., Kawa, K., Kodera, Y., Sasazuki, T., Japan Marrow Donor, P., 2015. Biological significance of HLA locus matching in unrelated donor bone marrow transplantation. Blood 125, 1189-1197
    Myers, S., Bottolo, L., Freeman, C., McVean, G., Donnelly, P., 2005. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321-324
    Myers, S., Freeman, C., Auton, A., Donnelly, P., McVean, G., 2008. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat. Genet. 40, 1124-1129
    Nei, M., 1987. Molecular Evolutionary Genetics Columbia Univ. Press, New York
    Paul, P., Nag, D., Chakraborty, S., 2016. Recombination hotspots: Models and tools for detection. DNA Repair (Amst) 40, 47-56
    Sabeti, P.C., Reich, D.E., Higgins, J.M., Levine, H.Z., Richter, D.J., Schaffner, S.F., Gabriel, S.B., Platko, J.V., Patterson, N.J., McDonald, G.J., Ackerman, H.C., Campbell, S.J., Altshuler, D., Cooper, R., Kwiatkowski, D., Ward, R., Lander, E.S., 2002. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832-837
    Saxena, A., McDonnell, E., Ramos, P.S., Sajuthi, S., Marion, M.C., Langefeld, C.D., Buyon, J.P., Clancy, R.M., 2012. Preferential transmission of genetic risk variants of candidate loci at 6p21 from asymptomatic grandparents to mothers of children with neonatal lupus. Arthritis Rheum. 64, 931-939
    Shiina, T., Hosomichi, K., Inoko, H., Kulski, J.K., 2009. The HLA genomic loci map: expression, interaction, diversity and disease. J. Hum. Genet. 54, 15-39
    Sun, Y., Kong, F., Ren, S., Yuan, F., Liang, F., Liu, N., Jin, L., Xi, Y., 2007. Severe acute graft-vs-host disease in a patient with acute monocytic leukemia having a recombination event between HLA-A/B loci from a multiple recombinant family. Tissue Antigens 70, 499-505
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739
    Traherne, J.A., Horton, R., Roberts, A.N., Miretti, M.M., Hurles, M.E., Stewart, C.A., Ashurst, J.L., Atrazhev, A.M., Coggill, P., Palmer, S., Almeida, J., Sims, S., Wilming, L.G., Rogers, J., de Jong, P.J., Carrington, M., Elliott, J.F., Sawcer, S., Todd, J.A., Trowsdale, J., Beck, S., 2006. Genetic analysis of completely sequenced disease-associated MHC haplotypes identifies shuffling of segments in recent human history. PLoS Genet. 2, e9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (269) PDF downloads (50) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return