5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 5
May  2022
Turn off MathJax
Article Contents

Genome-wide selection and introgression of Chinese rice varieties during breeding

doi: 10.1016/j.jgg.2022.02.025
Funds:

This work was supported by the National Key Research and Development Program of China (2016YFD0100301 to Z.X.M.), the National Natural Science Foundation of China (31670211 and 31970237 to Z.X.M.), Sanya Yazhou Bay Science and Technology City (SKJC-2020-02-001 to Z.X.M.), the Central Public-interest Scientific Institution Basal Research Fund (S2021ZD01 to Z.X.M.), the Major Incubation Project of Shenyang Normal University (ZD20210 to P.H.B.), and the Hundred Talent Program of Shenyang Normal University (SSDBRJH2002012 to P.H.B.).

  • Received Date: 2021-10-31
  • Accepted Date: 2022-02-16
  • Rev Recd Date: 2022-02-11
  • Publish Date: 2022-03-12
  • China is the largest rice-producing country, but the genomic landscape of rice diversity has not yet been clarified. In this study, we re-sequence 1070 rice varieties collected from China (400) and other regions in Asia (670). Among the six major rice groups (aus, indica-I, indica-II, aromatic, temperate japonica, and tropical japonica), almost all Chinese varieties belong to the indica-II or temperate japonica group. Most Chinese indica varieties belong to indica-II, which consists of two subgroups developed during different phases of rice breeding. The genomic segments underlying the differences between these subgroups span 36.32 Mb. The Chinese japonica rice varieties fall into the temperate japonica group, consisting of two subgroups based on their geographical distribution. The genomic segments underlying the differences between these subgroups span 27.69 Mb. These differentiated segments in the Chinese indica varieties span 45 genes with nonsynonymous mutations that are closely related to variations in plant height and grain width. Fifty-four genes with nonsynonymous mutations are associated with the differences in heading date between the two Chinese japonica subgroups. These findings provide new insights into rice diversity in China that will facilitate the molecular breeding.
  • loading
  • Appels, R., Eversole, K., Stein, N., Feuillet, C., Keller, B., Rogers, J., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J., 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403)
    Bosse, M., Megens, H.-J., Frantz, L.A., Madsen, O., Larson, G., Paudel, Y., Duijvesteijn, N., Harlizius, B., Hagemeijer, Y., Crooijmans, R.P., 2014. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nat. Commun. 5(1), 1-8
    Browning, B.L., Browning, S.R., 2013. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194(2), 459-471
    Browning, S.R., Browning, B.L., 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81(5), 1084-1097
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., 2011. The variant call format and VCFtools. Bioinformatics 27(15), 2156-2158
    Garris, A.J., Tai, T.H., Coburn, J., Kresovich, S., McCouch, S., 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169(3), 1631-1638
    Glaszmann, J.-C., 1987. Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 74(1), 21-30
    Gu, Z., Gu, L., Eils, R., Schlesner, M., Brors, B., 2014. Circlize implements and enhances circular visualization in R. Bioinformatics 30(19), 2811-2812
    Hao, C., Jiao, C., Hou, J., Li, T., Liu, H., Wang, Y., Zheng, J., Liu, H., Bi, Z., Xu, F., Zhao, J., Ma, L., Wang, Y., Majeed, U., Liu, X., Appels, R., Maccaferri, M., Tuberosa, R., Lu, H., Zhang, X., 2020. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol. Plant 13(12), 1733-1751
    Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., Guo, Y., Lu, Y., Zhou, C., Fan, D., Weng, Q., Zhu, C., Huang, T., Zhang, L., Wang, Y., Feng, L., Furuumi, H., Kubo, T., Miyabayashi, T., Yuan, X., Xu, Q., Dong, G., Zhan, Q., Li, C., Fujiyama, A., Toyoda, A., Lu, T., Feng, Q., Qian, Q., Li, J., Han, B., 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490(7421), 497-501
    Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J., Zhou, S., 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1), 1-10
    Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. Mega X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754-1760
    Ma, X., Wang, Z., Li, W., Zhang, Y., Zhou, X., Liu, Y., Ren, Z., Pei, X., Zhou, K., Zhang, W., He, K., Zhang, F., Liu, J., Ma, W., Xiao, G., Yang, D., 2019. Resequencing core accessions of a pedigree identifies derivation of genomic segments and key agronomic trait loci during cotton improvement. Plant Biotechnol. J. 17(4), 762-775
    Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 17(1), 10-12
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9), 1297-1303
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559-575
    Qian, Q., Guo, L., Smith, S.M., Li, J., 2016. Breeding high-yield superior quality hybrid super rice by rational design. Natl. Sci. Rev. 3(3), 283-294
    Saxena, D., Flores, S., Stotzky, G., 1999. Insecticidal toxin in root exudates from Bt corn. Nature 402(6761), 480-480
    Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., 2010. Genome sequence of the palaeopolyploid soybean. Nature 463(7278), 178-183
    Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956), 1112-1115
    Tanksley, S.D., McCouch, S.R., 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329), 1063-1066
    Wang, C.H., Zheng, X.M., Xu, Q., Yuan, X.P., Huang, L., Zhou, H.F., Wei, X.H., Ge, S., 2014. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity (Edinb) 112(5), 489-496
    Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38(16), e164-e164
    Wang, K., Wang, Z., Li, F., Ye, W., Wang, J., Song, G., Yue, Z., Cong, L., Shang, H., Zhu, S., 2012. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44(10), 1098-1103
    Wang, B., Lin, Z., Li, X., Zhao, Y., Zhao, B., Wu, G., Ma, X., Wang, H., Xie, Y., Li, Q., Song, G., Kong, D., Zheng, Z., Wei, H., Shen, R., Wu, H., Chen, C., Meng, Z., Wang, T., Li, Y., Li, X., Chen, Y., Lai, J., Hufford, M.B., Ross-Ibarra, J., He, H., Wang, H., 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52(6), 565-571
    Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557(7703), 43-49
    Wang, X., Chen, L., Ma, J., 2019. Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication. Genome Biol. 20(1), 22
    Wang, Z.-y., Wu, Z., Xing, Y., Zheng, F., Guo, X., Zhang, W., Hong, M., 1990. Nucleotide sequence of rice waxy gene. Nucleic Acids Res. 18(19), 5898
    Wu, B., Hu, W., Xing, Y.Z., 2018. The history and prospect of rice genetic breeding in China. Yi Chuan= Hereditas 40(10), 841-857
    Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M., 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88(1), 76-82
    Yu, J., Hu, S., Wang, J., Wong, G.K.-S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565), 79-92
    Yu, S., Ali, J., Zhang, C., Li, Z., Zhang, Q., 2020. Genomic breeding of green super rice varieties and their deployment in Asia and Africa. Theor. Appl. Genet. 133(5), 1427-1442
    Zeng, D., Tian, Z., Rao, Y., Dong, G., Yang, Y., Huang, L., Leng, Y., Xu, J., Sun, C., Zhang, G., 2017. Rational design of high-yield and superior-quality rice. Native Plants 3(4), 1-5
    Zhang, Q., 2007. Strategies for developing green super rice. Proc. Natl. Acad. Sci. U.S.A. 104(42), 16402-16409
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (228) PDF downloads (44) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return