5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

The SNAPc complex mediates starvation-induced trans-splicing in Caenorhabditis elegans

doi: 10.1016/j.jgg.2022.02.024
Funds:

D Program of China (2019YFA0802600), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB39010600), the National Natural Science Foundation of China (91940303, 31870812, 32070619, 31871300 and 31900434), the China Postdoctoral Science Foundation (2018M632542), and the Anhui Natural Science Foundation (1808085QC82 and 1908085QC96). This study was supported in part by the Fundamental Research Funds for the Central Universities.

We are grateful to the members of the Guang lab for their comments. We are also grateful to the International C. elegans Gene Knockout Consortium and the National Bioresource Project for providing the strains. Some strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). This work was supported by grants from the National Key R&

  • Received Date: 2021-11-14
  • Accepted Date: 2022-02-22
  • Rev Recd Date: 2022-02-20
  • Publish Date: 2022-03-10
  • Dietary restriction usually suppresses biosynthesis but activates catabolic pathways in animals. However, the short-term starvation enhances biosynthetic activities and promotes ribosomal biogenesis in adult Caenorhabditis elegans. The mechanism underlying the processes remains largely unknown. Here, we find that the short-term starvation enhances the SL1 trans-splicing of translation-related genes in adult C. elegans by transcriptome analysis. The small nuclear RNA-activating protein complex (SNAPc) promotes SL RNA production and mediates starvation-induced trans-splicing. TOFU-5, a core factor in the upstream sequence transcription complex (USTC) essential for piRNA production, is also involved in the starvation-induced trans-splicing processes. Knocking down components of the SNAPc complex and tofu-5 extends worm survival under starvation conditions. Taken together, our study highlights the importance of SL trans-splicing in the nutrition response and reveals a mechanism of the survival regulation by food deprivation via SNAPc and TOFU-5.
  • loading
  • Allen, M.A., Hillier, L.W., Waterston, R.H.,Blumenthal, T., 2011. A global analysis of C. elegans trans-splicing.Genome Res. 21, 255-264
    Angelo G, V G.M., 2009. Starvation protects germline stem cells and extends reproductive longevity in c. Elegans. Science326(5955), 954-958
    Bardet, A.F., Steinmann, J., Bafna, S., Knoblich, J.A., Zeitlinger, J.,Stark, A., 2013. Identification of transcription factor binding sites from chip-seq data at high resolution.Bioinformatics29, 2705-2713
    Baugh, L.R., Demodena, J.,Sternberg, P.W., 2009. Rna pol ii accumulates at promoters of growth genes during developmental arrest. Science324, 92-94
    Baumeister, R., Schaffitzel, E.,Hertweck, M., 2006. Endocrine signaling in caenorhabditis elegans controls stress response and longevity. J. Endocrinol.190, 191-202
    Beltran, T., Barroso, C., Birkle, T.Y., Stevens, L., Schwartz, H.T., Sternberg, P.W., Fradin, H., Gunsalus, K., Piano, F., Sharma, G., et al., 2019.Comparative epigenomics reveals that rna polymerase ii pausing and chromatin domain organization control nematode pirna biogenesis. Dev. Cell48, 793-810 e796
    Blumenthal, T., 2012.Trans-splicing and Operons in C. elegans.WormBook, 1-11
    Blumenthal, T., Evans, D., Link, C.D., Guffanti, A., Lawson, D., Thierry-Mieg, J., Thierry-Mieg, D., Chiu, W.L., Duke, K., Kiraly, M., et al., 2002.A global analysis of C. elegans operons.Nature417, 851-854
    Chang, Y.Y., Juhasz, G., Goraksha-Hicks, P., Arsham, A.M., Mallin, D.R., Muller, L.K.,Neufeld, T.P., 2009. Nutrient-dependent regulation of autophagy through the target of rapamycin pathway.Biochem. Soc. Trans.37, 232-236
    Chen, T., Chen, X., Zhang, S., Zhu, J., Tang, B., Wang, A., Dong, L., Zhang, Z., Yu, C., Sun, Y., et al., 2021. The genome sequence archive family:toward explosive data growth and diverse data types. Dev. Reprod. Biol
    Choi, C.P., Tay, R.J., Starostik, M.R., Feng, S., Moresco, J.J., Montgomery, B.E., Xu, E., Hammonds, M.A., Schatz, M.C., Montgomery, T.A., et al., 2021. Snpc-1.3 is a sex-specific transcription factor that drives male pirna expression in C. elegans. Elife10
    Codogno, P.,Meijer, A.J., 2005. Autophagy and signaling:their role in cell survival and cell death. Cell Death Differ. 12Suppl. 2, 1509-1518
    Conrad, R., Thomas, J, Spieth, J, and Blumenthal, T., 1991. Insertion of part of an intron into the 5[prime] untranslated region of a C. elegans gene converts it into a trans-spliced gene. Mol. Cell Biol.11:4
    Cordeiro Rodrigues, R.J., de Jesus Domingues, A.M., Hellmann, S., Dietz, S., de Albuquerque, B.F.M., Renz, C., Ulrich, H.D., Sarkies, P., Butter, F.,Ketting, R.F., 2019. Petisco is a novel protein complex required for 21u rna biogenesis and embryonic viability. Genes Dev. 33, 857-870
    de Lange, P., Moreno, M., Silvestri, E., Lombardi, A., Goglia, F.,Lanni, A., 2007. Fuel economy in food-deprived skeletal muscle:signaling pathways and regulatory mechanisms. Faseb. J. 21, 3431-3441
    Frokjaer-Jensen, C., Davis, M.W., Hopkins, C.E., Newman, B.J., Thummel, J.M., Olesen, S.P., Grunnet, M.,Jorgensen, E.M., 2008. Single-copy insertion of transgenes in C. elegans.Nat. Genet.40, 1375-1383
    Guang, S., Bochner, A.F., Burkhart, K.B., Burton, N., Pavelec, D.M.,Kennedy, S., 2010. Small regulatory rnas inhibit rna polymerase ii during the elongation phase of transcription. Nature465, 1097-1101
    Hannan, K.M., Brandenburger, Y., Jenkins, A., Sharkey, K., Cavanaugh, A., Rothblum, L., Moss, T., Poortinga, G., McArthur, G.A., Pearson, R.B., et al., 2003. Mtor-dependent regulation of ribosomal gene transcription requires s6k1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor ubf. Mol. Cell Biol.23, 8862-8877
    Hastings, K.E., 2005. Sl trans-splicing:easy come or easy go?Trends Genet.21, 240-247
    Henry RW, S C., Kobayashi R, Hernandez N.,1995. A tbp-taf complex required for transcription of human snrna genes by rna polymerase ii and iii. Nature374(6523), 653-656
    Huang, X.Y., Cheng, P., Weng, C.C., Xu, Z.X., Zeng, C.M., Xu, Z., Chen, X.Y., Zhu, C.M., Guang, S.H.,Feng, X.Z., 2021. A chromodomain protein mediates heterochromatin-directed pirna expression. Proc. Natl. Acad. Sci. U.S.A.118
    Jawdekar, G.W.,Henry, R.W., 2008. Transcriptional regulation of human small nuclear rna genes. Biochim.Biophys.Acta1779, 295-305
    Kasper, D.M., Wang, G., Gardner, K.E., Johnstone, T.G.,Reinke, V., 2014. The C. elegans snapc component snpc-4 coats pirna domains and is globally required for pirna abundance. Dev. Cell31, 145-158
    Kim, D., Paggi, J.M., Park, C., Bennett, C.,Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype.Nat. Biotechnol.37, 907-915
    Kraft, C., Deplazes, A., Sohrmann, M.,Peter, M., 2008. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the ubp3p/bre5p ubiquitin protease. Nat. Cell Biol.10, 602-610
    Michael Krause, D.H., 1987. A trans-spliced leader sequence on actin mrna in C. elegans. Cell49, 753-761
    Langmead, B.,Salzberg, S.L., 2012. Fast gapped-read alignment with bowtie 2.Nat. Methods9, 357-359
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,Genome Project Data Processing, S., 2009. The sequence alignment/map format and samtools. Bioinformatics25, 2078-2079
    Ma, B.,Hernandez, N., 2002. Redundant cooperative interactions for assembly of a human u6 transcription initiation complex.Mol. Cell Biol.22, 8067-8078
    MacMorris, M., Kumar, M., Lasda, E., Larsen, A., Kraemer, B.,Blumenthal, T., 2007. A novel family of C. elegans snrnps contains proteins associated with trans-splicing. RNA13, 511-520
    Maxwell, C.S., Antoshechkin, I., Kurhanewicz, N., Belsky, J.A.,Baugh, L.R., 2012. Nutritional control of mrna isoform expression during developmental arrest and recovery in C. elegans. Genome Res.22, 1920-1929
    Maxwell, C.S., Kruesi, W.S., Core, L.J., Kurhanewicz, N., Waters, C.T., Lewarch, C.L., Antoshechkin, I., Lis, J.T., Meyer, B.J.,Baugh, L.R., 2014. Pol ii docking and pausing at growth and stress genes in C. elegans. Cell Rep.6, 455-466
    Members, C.-N.,Partners, 2021. Database resources of the national genomics data center, China national center for bioinformation in 2021. Nucleic Acids Res. 49, D18-D28
    Nelson DW, H.B., 1985. Genes coding for 5s ribosomal rna of the nematode C. elegans.Gene38(1-3), 245-251
    Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T.,Salzberg, S.L., 2015. Stringtie enables improved reconstruction of a transcriptome from rna-seq reads. Nat. Biotechnol.33, 290-295
    Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G.,Mesirov, J.P., 2011. Integrative genomics viewer.Nat. Biotechnol.29, 24-26
    Saito, T.L., Hashimoto, S., Gu, S.G., Morton, J.J., Stadler, M., Blumenthal, T., Fire, A.,Morishita, S., 2013. The transcription start site landscape of C. elegans. Genome Res. 23, 1348-1361
    Scott, R.C., Schuldiner, O.,Neufeld, T.P., 2004. Role and regulation of starvation-induced autophagy in the drosophila fat body.Dev. Cell7, 167-178
    Spieth, J., Brooke, G., Kuersten, S., Lea, K.,Blumenthal, T., 1993. Operons in c. Elegans:polycistronic mrna precursors are processed by trans-splicing of sl2 to downstream coding regions. Cell73, 521-532
    Stricklin, S.L., 2005. C. Elegans Noncoding RnaGenes. WormBook
    Su Y, S Y., Wang Y, Jessop L, Zhan L, Stumph WE., 1997. Characterization of a drosophila proximal-sequence-element-binding protein involved in transcription of small nuclear rna genes.. Eur. J. Biochem.248(1), 231-237
    Tan, K.T., Luo, S.C., Ho, W.Z.,Lee, Y.H., 2011. Insulin/igf-1 receptor signaling enhances biosynthetic activity and fat mobilization in the initial phase of starvation in adult male C. elegans. Cell Metabol.14, 390-402
    Timmons, L., Court, D.L.,Fire, A., 2001. Ingestion of bacterially expressed dsrnas can produce specific and potent genetic interference in C. elegans. Gene263, 103-112
    Weick, E.M., Sarkies, P., Silva, N., Chen, R.A., Moss, S.M., Cording, A.C., Ahringer, J., Martinez-Perez, E.,Miska, E.A., 2014. Prde-1 is a nuclear factor essential for the biogenesis of ruby motif-dependent pirnas in C. elegans. Genes Dev.28, 783-796
    Weng, C., Kosalka, J., Berkyurek, A.C., Stempor, P., Feng, X., Mao, H., Zeng, C., Li, W.J., Yan, Y.H., Dong, M.Q., et al., 2019.The ustc co-opts an ancient machinery to drive pirna transcription in C. elegans. Genes Dev.33, 90-102
    WongMW, H.R., MaB, et al.,1998. The large subunit of basal transcription factor snapc is a myb domain protein that interacts with oct-1.. Mol. Cell Biol.18(1), 368-377
    Wu, J., Jiang, X., Li, Y., Zhu, T., Zhang, J., Zhang, Z., Zhang, L., Zhang, Y., Wang, Y., Zou, X., et al., 2018.Pha-4/foxa senses nucleolar stress to regulate lipid accumulation in C. elegans. Nat. Commun.9, 1195
    Yague-Sanz, C.,Hermand, D., 2018. Sl-quant:a fast and flexible pipeline to quantify spliced leader trans-splicing events from rna-seq data. GigaScience7
    Yang, Y.F., Zhang, X., Ma, X., Zhao, T., Sun, Q., Huan, Q., Wu, S., Du, Z.,Qian, W., 2017. Trans-splicing enhances translational efficiency in C. elegans. Genome Res. 27, 1525-1535
    Yoon JB, M S., Bai L, Wang Z, Roeder RG., 1995. Proximal sequence element-binding transcription factor (ptf) is a multisubunit complex required for transcription of both rna polymerase ii- and rna polymerase iii-dependent small nuclear rna genes. Mol. Cell Biol. (4):2019-2027
    Yu, G., Wang, L.G.,He, Q.Y., 2015. Chipseeker:an r/bioconductor package for chip peak annotation, comparison and visualization. Bioinformatics31, 2382-2383
    Zaslaver, A., Baugh, L.R.,Sternberg, P.W., 2011. Metazoan operons accelerate recovery from growth-arrested states. Cell145, 981-992
    Zeng, C., Weng, C., Wang, X., Yan, Y.H., Li, W.J., Xu, D., Hong, M., Liao, S., Dong, M.Q., Feng, X., et al., 2019.Functional proteomics identifies a pics complex required for pirna maturation and chromosome segregation. Cell Rep. 27, 3561-3572 e3563
    Zhu, C., Yan, Q., Weng, C., Hou, X., Mao, H., Liu, D., Feng, X.,Guang, S., 2018. Erroneous ribosomal rnas promote the generation of antisense ribosomal sirna. Proc. Natl. Acad. Sci. U.S.A.115, 10082-10087
    Zorio, D.A., Cheng, N.N., Blumenthal, T., and Spieth, J., 1994. Operons as a common form of chromosomal organization in C. elegans.Nature372, 270-272
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return