Allen, B.G., Walsh, M.P., Durussel, I., Cox, J.A., 1996. Characterization of the Ca2+-binding properties of calgizzarin (S100C) isolated from chicken gizzard smooth muscle. Biochem. Cell. Biol. 74, 687-694
|
Andres Cerezo, L., Hulejova, H., Sumova, B., Kropackova, T., Krystufkova, O., Klein, M., Mann, H.F., Zamecnik, J., Pecha, O., Pavelka, K., et al., 2019. Pro-inflammatory S100A11 is elevated in inflammatory myopathies and reflects disease activity and extramuscular manifestations in myositis. Cytokine 116, 13-20
|
Arrese, M., Hernandez, A., Astete, L., Estrada, L., Cabello-Verrugio, C., Daniel, C., 2018. TGF-β and hepatocellular carcinoma: when a friend becomes an enemy. Curr. Protein Pept. Sci. 19, 1172–1179
|
Arthur, M.J., 2002. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122, 1525-1528
|
Bataller, R., Brenner, D.A., 2001. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin. Liver Dis. 21, 437-451
|
Bataller, R., Brenner, D.A., 2005. Liver fibrosis. J. Clin. Invest. 115, 209-218
|
Bedossa, P., Peltier, E., Terris, B., Franco, D., Poynard, T., 1995. Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 21, 760-766
|
Caballeria, L., Pera, G., Arteaga, I., Rodriguez, L., Aluma, A., Morillas, R.M., de la Ossa, N., Diaz, A., Exposito, C., Miranda, D., et al., 2018. High prevalence of liver fibrosis among European adults with unknown liver disease: a population-based study. Clin. Gastroenterol. Hepatol. 16, 1138-1145.e5
|
Cecil, D.L., Johnson, K., Rediske, J., Lotz, M., Schmidt, A.M., Terkeltaub, R., 2005. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J. Immunol. 175, 8296-8302
|
Chalasani, N., Abdelmalek, M.F., Garcia-Tsao, G., Vuppalanchi, R., Traber, P.G., 2019. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology 158, 1334-1345.e5
|
Cui, A., Ding, D., Li, Y., 2021. Regulation of hepatic metabolism and cell growth by the ATF/CREB family of transcription factors. Diabetes 70, 653-664
|
Donato, R., 2001. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33, 637-668
|
Donghee, K., Li, A.A., Chiranjeevi, G., Ali, K.M., George, C., Glenn, J.S., Aijaz, A., 2018. Changing trends in etiology-based annual mortality from chronic liver disease, From 2007 Through 2016. Gastroenterology 155, 1154-1163.e3
|
Fransvea, E., Angelotti, U.F., Antonaci, S., Giannelli, G., 2008. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 47, 1557-1566
|
Friedman, S.L., 2003. Liver fibrosis--from bench to bedside. J. Hepatol. 38, S38-S53
|
Gong, X.M., Li, Y.F., Luo, J., Wang, J.Q., Wei, J., Wang, J.Q., Xiao, T., Xie, C., Hong, J., Ning, G., et al., 2019. Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance. Nat. Metab. 1, 570-583
|
Gorrell, M.D., 2007. Liver fibrosis: the hepatocyte revisited. Hepatology 46, 1659-1661
|
Gressner, A.M., Weiskirchen, R., 2006. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets. J. Cell Mol. Med. 10, 76-99
|
Hernandezgea, V., Friedman, S.L., 2011. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. 6, 425-456
|
Inoue, Y., Itoh, Y., Abe, K., Okamoto, T., Daitoku, H., Fukamizu, A., Onozaki, K., Hayashi, H., 2007. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26, 500-508
|
Jessica, E.S., Shay, James, P. Hamilton, 2018. Hepatic fibrosis: avenues of investigation and clinical implications. Clin. Liver Dis. 11, 111-114
|
Laia, C., Francesco, D., Serena, M., Daniel, C.D., Aristidis, M., Gianluigi, G., Isabel, F., 2018. TGF-β and the tissue microenvironment: relevance in fibrosis and cancer. Int. J. Mol. Sci. 19, 1294
|
Lanaya, H., Natarajan, A., Komposch, K., Li, L., Amberg, N., Chen, L., Wculek, S.K., Hammer, M., Zenz, R., Peck-Radosavljevic, M., et al., 2014. EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat. Cell Biol. 16, 972-977
|
Larter, C.Z., Yeh, M.M., 2008. Animal models of NASH: getting both pathology and metabolic context right. J. Gastroenterol. Hepatol. 23, 1635-1648
|
Li, J., Qu, X., Ricardo, S.D., Bertram, J.F., Nikolic-Paterson, D.J., 2010. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am. J. Pathol. 177, 1065-1071
|
Lim, Y.S., Kim, W.R., 2008. The global impact of hepatic fibrosis and end-stage liver disease. Clin. Liver Dis. 12, 733-746, vii
|
Luo, X., Xie, H., Long, X., Zhou, M., Xu, Z., Shi, B., Jiang, H., Li, Z., 2013. EGFRvIII mediates hepatocellular carcinoma cell invasion by promoting S100 calcium binding protein A11 expression. PLoS One 8, e83332
|
Maity, S., Muhamed, J., Sarikhani, M., Kumar, S., Ahamed, F., Spurthi, K.M., Ravi, V., Jain, A., Khan, D., Arathi, B.P., et al., 2020. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem. 295, 415-434
|
Martinez-Martinez, E., Ibarrola, J., Lachen-Montes, M., Fernandez-Celis, A., Jaisser, F., Santamaria, E., Fernandez-Irigoyen, J., Lopez-Andres, N., 2017. Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts. J. Proteonomics. 166, 93-100
|
Oh, H.Y., Shin, S.K., Heo, H.S., Ahn, J.S., Kwon, E.Y., Park, J.H., Cho, Y.Y., Park, H.J., Lee, M.K., Kim, E.J., et al., 2013. Time-dependent network analysis reveals molecular targets underlying the development of diet-induced obesity and non-alcoholic steatohepatitis. Genes Nutr. 8, 301-316
|
Popov, Y., Schuppan, D., 2009. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology 50, 1294-1306
|
Safronova, A., Araujo, A., Camanzo, E., Moon, T.J., Elliott, M.R., Beiting, D.P., Yarovinsky, F., 2019. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat. Immunol. 20, 64-72
|
Saho, S., Satoh, H., Kondo, E., Inoue, Y., Yamauchi, A., Murata, H., Kinoshita, R., Yamamoto, K., Futami, J., Putranto, E.W., et al., 2016. Active secretion of dimerized S100A11 induced by the peroxisome in mesothelioma cells. Cancer Microenviron. 9, 93-105
|
Sakaguchi, M., Sonegawa, H., Murata, H., Kitazoe, M., Futami, J., Kataoka, K., Yamada, H., Huh, N., 2008. S100A11, an dual mediator for growth regulation of human keratinocytes. Mol. Biol. Cell 19, 78-85
|
Senturk, S., Mumcuoglu, M., Gursoyyuzugullu, O., Cingoz, B., Akcali, K.C., Ozturk, M., 2010. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 52, 966-974
|
Shang, X., Cheng, H., Zhou, R., 2008. Chromosomal mapping, differential origin and evolution of theS100gene family. Genet. Sel. Evol. 40, 449
|
Simonsson, M., Kanduri, M., Gronroos, E., Heldin, C.H., Ericsson, J., 2006. The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J. Biol. Chem. 281, 39870-39880
|
Sobolewski, C., Abegg, D., Berthou, F., Dolicka, D., Calo, N., Sempoux, C., Fournier, M., Maeder, C., Ay, A.S., Clavien, P.A., et al., 2020. S100A11/ANXA2 belongs to a tumour suppressor/oncogene network deregulated early with steatosis and involved in inflammation and hepatocellular carcinoma development. Gut 69, 1841-1854
|
Teng, F., Jiang, J., Zhang, J., Yuan, Y., Li, K., Zhou, B., Zhou, X., Liu, W., Zhang, P., Liu, D., et al., 2021. The S100 calcium-binding protein A11 promotes hepatic steatosis through RAGE-mediated AKT-mTOR signaling. Metabolism 117, 154725
|
Teratani, T., Tomita, K., Furuhashi, H., Sugihara, N., Higashiyama, M., Nishikawa, M., Irie, R., Takajo, T., Wada, A., Horiuchi, K., et al., 2019. Lipoprotein lipase up-regulation in hepatic stellate cells exacerbates liver fibrosis in nonalcoholic steatohepatitis in mice. Hepatol. Commun. 3, 1098-1112
|
Xu, M., Xu, H.H., Lin, Y., Sun, X., Wang, L.J., Fang, Z.P., Su, X.H., Liang, X.J., Hu, Y., Liu, Z.M., et al., 2019. LECT2, a ligand for Tie1, plays a crucial role in liver fibrogenesis. Cell 178, 1478-1492.e20
|
Yang, M., Wang, C., Li, S., Xv, X., She, S., Ran, X., Li, S., Hu, H., Hu, P., Zhang, D., et al., 2017. Annexin A2 promotes liver fibrosis by mediating von Willebrand factor secretion. Dig. Liver Dis. 49, 780-788
|
Yanguas, S.C., Cogliati, B., Willebrords, J., Maes, M., Colle, I., van den Bossche, B., de Oliveira, C., Andraus, W., Alves, V.A.F., Leclercq, I., et al., 2016. Experimental models of liver fibrosis. Arch. Toxicol. 90, 1025-1048
|
Zhang, J., Li, Y., Liu, Q., Huang, Y., Li, R., Wu, T., Zhang, Z., Zhou, J., Huang, H., Tang, Q., et al., 2021a. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells. Hepatology 73, 1140-1157
|
Zhang, L., Zhang, Z., Li, Y., Liao, S., Wu, X., Chang, Q., Liang, B., 2015. Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease. Sci. Rep. 5, 15970
|
Zhang, L., Zhu, T., Miao, H., Liang, B., 2021b. The calcium binding protein S100A11 and its roles in diseases. Front. Cell Dev. Biol. 9, 693262
|
Zhang, L., Zhang, Z.G., Li, C.B., Zhu, T.T., Gao, J., Zhou, H., Zheng, Y.Z., Chang, Q., Wang, M.S., Wu, J.Y., et al., 2021c. S100A11 promotes liver steatosis via FOXO1-mediated autophagy and lipogenesis. Cell Mol. Gastroenterol. Hepatol. 11, 697-724
|
Zhao, Y., Shi, X., Ding, C., Feng, D., Li, Y., Hu, Y., Wang, L., Gao, D., Tian, X., Yao, J., 2018. Carnosic acid prevents COL1A2 transcription through the reduction of Smad3 acetylation via the AMPKα1/SIRT1 pathway. Toxicol. Appl. Pharmacol. 339, 172-180
|
Zhong, X., Huang, M., Kim, H.G., Zhang, Y., Chowdhury, K., Cai, W., Saxena, R., Schwabe, R.F., Liangpunsakul, S., Dong, X.C., 2020. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells. Cell Mol. Gastroenterol. Hepatol. 10, 341-364
|