5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 5
May  2022
Turn off MathJax
Article Contents

Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice

doi: 10.1016/j.jgg.2022.02.006
Funds:

We thank Michael Cashel for the (CF1648, CF1652, CF4941 and CF4943)

Ben Field for the (SAIL_391_E11)

Arizona Genomics Institute (AGI) for the BAC clone (OSJNBb0050D18). This research was supported by grants from the Ministry of Agriculture and Rural Affairs of China (2016ZX08009003-002, 2016ZX08009003-005 and 2016ZX08009003-004), Chinese Academy of Sciences (XDA08010401-2), the Ministry of Science and Technology of the People's Republic of China (2016YFD0100706), and the State Key Laboratory of Plant Genomics.

  • Received Date: 2021-11-21
  • Accepted Date: 2022-02-16
  • Rev Recd Date: 2022-02-14
  • Publish Date: 2022-02-18
  • Nitrogen is an essential macronutrient for all living organisms and is critical for crop productivity and quality. In higher plants, inorganic nitrogen is absorbed through roots and then assimilated into amino acids by the highly conserved glutamine synthetase/glutamine:2-oxoglutarate aminotransferase (GS/GOGAT) cycle. How nitrogen metabolism and nitrogen starvation responses of plants are regulated remains largely unknown. Previous studies revealed that mutations in the rice ABNORMAL CYTOKININ RESPONSE1 (ABC1) gene encoding Fd-GOGAT cause a typical nitrogen deficiency syndrome. Here, we show that ARE2 (for ABC1 REPRESSOR2) is a key regulator of nitrogen starvation responses in rice. The are2 mutations partially rescue the nitrogen-deficient phenotype of abc1 and the are2 mutants show enhanced tolerance to nitrogen deficiency, suggesting that ARE2 genetically interacts with ABC1/Fd-GOGAT. ARE2 encodes a chloroplast-localized RelA/SpoT homolog protein that catalyzes the hydrolysis of guanosine pentaphosphate or tetraphosphate (p)ppGpp, an alarmone regulating the stringent response in bacteria under nutritional stress conditions. The are2 mutants accumulate excessive amounts of (p)ppGpp, which correlate with lower levels of photosynthetic proteins and higher amino acid levels. Collectively, these observations suggest that the alarmone (p)ppGpp mediates nitrogen stress responses and may constitute a highly conserved mechanism from bacteria to plants.
  • loading
  • An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al., 2003. Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047
    Atkinson, G.C., Tenson, T.,Hauryliuk, V., 2011. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 6, e23479
    Bechtold, N.,Pelletier, G., 1998. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259-266
    Beletsky, A.V., Filyushin, M.A., Gruzdev, E.V., Mazur, A.M., Prokhortchouk, E.B., Kochieva, E.Z., Mardanov, A.V., Ravin, N.V.,Skryabin, K.G., 2017. De novo transcriptome assembly of the mycoheterotrophic plant Monotropa hypopitys. Genom. Data 11, 60-61
    Boniecka, J., Prusinska, J., Dabrowska, G.B.,Goc, A., 2017. Within and beyond the stringent response-RSH and (p)ppGpp in plants. Planta 246, 817-842
    Brown, D.R., Barton, G., Pan, Z., Buck, M.,Wigneshweraraj, S., 2014. Nitrogen stress response and stringent response are coupled in Escherichia coli. Nat. Commun. 5, 4115
    Cashel, M., 1969. The control of ribonucleic acid synthesis in Escherichia coli. Iv. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J. Biol. Chem. 244, 3133-3141
    Cashel, M.,Gallant, J., 1969. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221, 838-841
    Cashel, M., Kalbacher, B., 1970. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J. Biol. Chem. 245, 2309-2318
    Chan, K.X., Phua, S.Y., Crisp, P., McQuinn, R.,Pogson, B.J., 2016. Learning the languages of the chloroplast: retrograde signaling and beyond. Annu. Rev. Plant Biol. 67, 25-53
    Chen, H., Li, C., Liu, L., Zhao, J., Cheng, X., Jiang, G.,Zhai, W., 2016. The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. Oryzae in rice. Sci. Rep. 6, 26411
    Chen, J., Bang, W.Y., Lee, Y., Kim, S., Lee, K.W., Kim, S.W., Son, Y.S., Kim, D.W., Akhter, S.,Bahk, J.D., 2014. AtObgC-AtRSH1 interaction may play a vital role in stress response signal transduction in Arabidopsis. Plant Physiol. Biochem. 74, 176-184
    Cox, J.,Mann, M., 2008. Maxquant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372
    Fiehn, O., Kopka, J., Trethewey, R.N.,Willmitzer, L., 2000. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72, 3573-3580
    Field, B., 2018. Green magic: regulation of the chloroplast stress response by (p)ppGpp in plants and algae. J. Exp. Bot. 69, 2797-2807
    Givens, R.M., Lin, M.H., Taylor, D.J., Mechold, U., Berry, J.O.,Hernandez, V.J., 2004. Inducible expression, enzymatic activity, and origin of higher plant homologues of bacterial RelA/SpoT stress proteins in Nicotiana tabacum. J. Biol. Chem. 279, 7495-7504
    Good, A.G., Shrawat, A.K.,Muench, D.G., 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 9, 597-605
    Green, B.R., 2011. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 66, 34-44
    Guo, M., Wang, Q., Zong, Y., Nian, J., Li, H., Li, J., Wang, T., Gao, C.,Zuo, J., 2021. Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat. J. Genet. Genom. 48, 950-953
    Hiei, Y., Ohta, S., Komari, T., Kumashiro, T., 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282
    Hogg, T., Mechold, U., Malke, H., Cashel, M.,Hilgenfeld, R., 2004. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell 117, 57-68
    Honoki, R., Ono, S., Oikawa, A., Saito, K.,Masuda, S., 2018. Significance of accumulation of the alarmone (p)ppGpp in chloroplasts for controlling photosynthesis and metabolite balance during nitrogen starvation in Arabidopsis. Photosynth. Res. 135, 299-308
    Ihara, Y.,Masuda, S., 2016. Cytosolic ppGpp accumulation induces retarded plant growth and development. Plant Signal. Behav. 11, e1132966
    Ihara, Y., Ohta, H.,Masuda, S., 2015. A highly sensitive quantification method for the accumulation of alarmone ppGpp in Arabidopsis thaliana using UPLC-ESI-qMS/MS. J. Plant Res. 128, 511-518
    Kamada-Nobusada, T., Makita, N., Kojima, M.,Sakakibara, H., 2013. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. Plant Cell Physiol. 54, 1881-1893
    Keasling, J.D., Bertsch, L.,Kornberg, A., 1993. Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc. Natl. Acad. Sci. U.S.A. 90, 7029-7033
    Kmiecik, P., Leonardelli, M.,Teige, M., 2016. Novel connections in plant organellar signalling link different stress responses and signalling pathways. J. Exp. Bot. 67, 3793-3807
    Krapp, A., 2015. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr. Opin. Plant Biol. 25, 115-122
    Lehmann, T., Skrok, A.,Dabert, M., 2010. Stress-induced changes in glutamate dehydrogenase activity imply its role in adaptation to C and N metabolism in lupine embryos. Physiol. Plantarum 138, 35-47
    Li, H., Hu, B.,Chu, C., 2017. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J. Exp. Bot. 68, 2477-2488
    Liu, L., Zhang, Y., Tang, S., Zhao, Q., Zhang, Z., Zhang, H., Dong, L., Guo, H.,Xie, Q., 2010. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 61, 893-903
    Maekawa, M., Honoki, R., Ihara, Y., Sato, R., Oikawa, A., Kanno, Y., Ohta, H., Seo, M., Saito, K.,Masuda, S., 2015. Impact of the plastidial stringent response in plant growth and stress responses. Native Plants 1, 15167
    Magnusson, L.U., Farewell, A.,Nystrom, T., 2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13, 236-242
    Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L.,Suzuki, A., 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105, 1141-1157
    Mechold, U., Cashel, M., Steiner, K., Gentry, D.,Malke, H., 1996. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis. J. Bacteriol. 178, 1401-1411
    Mizusawa, K., Masuda, S.,Ohta, H., 2008. Expression profiling of four RelA/SpoT-like proteins, homologues of bacterial stringent factors, in Arabidopsis thaliana. Planta 228, 553-562
    My, L., Rekoske, B., Lemke, J.J., Viala, J.P., Gourse, R.L.,Bouveret, E., 2013. Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J. Bacteriol. 195, 3784-3795
    Ochi, K., Nishizawa, T., Inaoka, T., Yamada, A., Hashimoto, K., Hosaka, T., Okamoto, S.,Ozeki, Y., 2012. Heterologous expression of a plant RelA-SpoT homologue results in increased stress tolerance in Saccharomyces cerevisiae by accumulation of the bacterial alarmone ppGpp. Microbiology 158, 2213-2224
    Potrykus, K.,Cashel, M., 2008.(p)ppGpp: still magical? Annu. Rev. Microbiol. 62, 35-51
    Reyes-Prieto, A., Weber, A.P.,Bhattacharya, D., 2007. The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 41, 147-168
    Ronneau, S., Petit, K., De Bolle, X.,Hallez, R., 2016. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat. Commun. 7, 11423
    Sato, M., Takahashi, K., Ochiai, Y., Hosaka, T., Ochi, K.,Nabeta, K., 2009. Bacterial alarmone, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), predominantly binds the beta' subunit of plastid-encoded plastid rna polymerase in chloroplasts. Chembiochem. 10, 1227-1233
    Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., Pliakonis, E.D., Delis, I.D., Yakoumakis, D.I., Kouvarakis, A., Papadakis, A.K., Stephanou, E.G.,Roubelakis-Angelakis, K.A., 2006. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18, 2767-2781
    Srivastava, H.,Singh, R., 1987. Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochemistry (Oxf.). 26, 597-610
    Steinchen, W.,Bange, G., 2016. The magic dance of the alarmones (p)ppGpp. Mol. Microbiol. 101, 531-544
    Sugliani, M., Abdelkefi, H., Ke, H., Bouveret, E., Robaglia, C., Caffarri, S.,Field, B., 2016. An ancient bacterial signaling pathway regulates chloroplast function to influence growth and development in Arabidopsis. Plant Cell 28, 661-679
    Sun, D., Lee, G., Lee, J.H., Kim, H.Y., Rhee, H.W., Park, S.Y., Kim, K.J., Kim, Y., Kim, B.Y., Hong, J.I., et al., 2010. A metazoan ortholog of SpoT hydrolyzes ppgpp and functions in starvation responses. Nat. Struct. Mol. Biol. 17, 1188-1194
    Takahashi, K., Kasai, K.,Ochi, K., 2004. Identification of the bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in plants. Proc. Natl. Acad. Sci. U.S.A. 101, 4320-4324
    Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W.,Su, Z., 2017. Agrigo v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45, W122-W129
    Toki, S., Hara, N., Ono, K., Onodera, H., Tagiri, A., Oka, S.,Tanaka, H., 2006. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J. 47, 969-976
    Tzfira, T., Tian, G.W., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A.,Citovsky, V., 2005. pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503-516
    van der Biezen, E.A., Sun, J., Coleman, M.J., Bibb, M.J.,Jones, J.D., 2000. Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc. Natl. Acad. Sci. U.S.A. 97, 3747-3752
    Wang, Q., Nian, J., Xie, X., Yu, H., Zhang, J., Bai, J., Dong, G., Hu, J., Bai, B., Chen, L., et al., 2018. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat. Commun. 9, 735
    Waters, M.T.,Langdale, J.A., 2009. The making of a chloroplast. EMBO J. 28, 2861-2873
    Wisniewski, J.R., Zougman, A.,Mann, M., 2009. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8, 5674-5678
    Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G.,Cashel, M., 1991. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980-5990
    Xiong, L., Lee, M.W., Qi, M.,Yang, Y., 2001. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol. Plant Microbe Interact. 14, 685-692
    Xu, G., Fan, X.,Miller, A.J., 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63, 153-182
    Xu, X., Wu, K., Xu, R., Yu, J., Wang, J., Zhao, Y., Wang, Y., Song, W., Wang, S., Gao, Z., et al., 2019. Pyramiding of the dep1-1 and NAL1NJ6 alleles achieves sustainable improvements in nitrogen-use efficiency and grain yield in japonica rice breeding. J. Genet. Genom. 46, 325-328
    Yang, X., Nian, J., Xie, Q., Feng, J., Zhang, F., Jing, H., Zhang, J., Dong, G., Liang, Y., Peng, J., et al., 2016. Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol. Plant 9, 1520-1534
    Yoshida, S., Forno, D., Cook, J.,Gomez, K., 1976. Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Manila, Philippin
    Zeng, D.D., Qin, R., Li, M., Alamin, M., Jin, X.L., Liu, Y.,Shi, C.H., 2017. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol. Genet. Genom. 292, 385-395
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (429) PDF downloads (53) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return