5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 5
May  2022
Turn off MathJax
Article Contents

Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice

doi: 10.1016/j.jgg.2022.01.007
Funds:

Grateful thanks to Prof. Yan Guo, College of Biology, China Agricultural University, who read the manuscript critically. This research was supported by self-regulated projects of the State Key Laboratory of Plant Physiology and Biochemistry and the National Natural Science Foundation of China (3137158).

  • Received Date: 2021-09-24
  • Accepted Date: 2022-01-18
  • Rev Recd Date: 2022-01-17
  • Publish Date: 2022-02-07
  • Soil salinity inhibits seed germination and reduces seedling survival rate, resulting in significant yield reductions in crops. Here, we report the identification of a polyamine oxidase, OsPAO3, conferring salt tolerance at the germination stage in rice (Oryza sativa L.), through map-based cloning approach. OsPAO3 is up-regulated under salt stress at the germination stage and highly expressed in various organs. Overexpression of OsPAO3 increases activity of polyamine oxidases, enhancing the polyamine content in seed coleoptiles. Increased polyamine may lead to the enhance of the activity of ROS-scavenging enzymes to eliminate over-accumulated H2O2 and to reduce Na+ content in seed coleoptiles to maintain ion homeostasis and weaken Na+ damage. These changes resulted in stronger salt tolerance at the germination stage in rice. Our findings not only provide a unique gene for breeding new salt-tolerant rice cultivars but also help to elucidate the mechanism of salt tolerance in rice.
  • loading
  • Alcazar, R., Planas, J., Saxena, T., Zarza, X., Bortolotti, C., Cuevas, J., Bitrian, M., Tiburcio, A.F., Altabella, T., 2010. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol. Bioch. 48, 547-552
    An, Z., Jing, W., Liu, Y., Zhang, W., 2008. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J. Exp. Bot. 59, 815-825
    Andronis, E.A., Moschou, P.N., Toumi, I., Roubelakis-Angelakis, K.A., 2014. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. Front. Plant Sci. 5, 132
    Angelini, R., Tisi, A., Rea, G., Chen, M.M., Botta, M., Federico, R., Cona, A., 2008. Involvement of polyamine oxidase in wound healing. Plant Physiol. 146, 162-177
    Berberich, T., Sagor, G.H.M., Kusano, T., 2015. Polyamines in Plant Stress Response, in: Kusano T., Suzuki H. (eds) Polyamines. Springer Tokyo, pp. 155-168
    Chattopadhyay, M.K., Tabor, C.W., Tabor, H., 2006. Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Δ mutant of Saccharomyces cerevisiae. Yeast 23, 751-761
    Chinnusamy, V., Jagendorf, A., Zhu, J.K., 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437-448
    Choudhury, F.K., Rivero, R.M., Blumwald, E., Mittler, R., 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867
    Cona, A., Rea, G., Angelini, R., Federico, R., Tavladoraki, P., 2006. Functions of amine oxidases in plant development and defence. Trends Plant Sci. 11, 80-88
    Czarnocka, W., Karpinski, S., 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 122, 4-20
    Dai, X., Xu, Y., Ma, Q., Xu, W.Y., Wang, T., Xue, Y.B., Chong, K., 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 143, 1739-1751
    Dobrovinskaya, O.R., Muniz, J., Pottosin, I.I., 1999. Inhibition of vacuolar ion channels by polyamines. J. Membrane Biol. 167, 127
    Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-, salt- and cold-responsive gene expression. Plant J. 33, 751-763
    Fincato, P., Moschou, P.N., Ahou, A., Angelini, R., Roubelakis-Angelakis, K.A., Federico, R., Tavladoraki, P., 2012. The members of Arabidopsis thaliana PAO gene family exhibit distinct tissue- and organ-specific expression pattern during seedling growth and flower development. Amino Acids 42, 831
    Gong, B., Wang, X., Wei, M., Yang, F., Li, Y., Shi, Q., 2015. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell, Tissue Organ Cult. 124, 377-391
    Hellens, R.P., Allan, A.C., Frie, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P., Laing, W.A., 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13
    Hu, X., Zhang, Y., Shi, Y., Zhang, Z., Zou, Z., Zhang, H., Zhao, J., 2012. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress. Plant Physiol. Biochem. 57, 200-209
    Huang, X.Y., Chao, D.Y., Gao, J.P., Zhu, M.Z., Shi, M., Lin, H.X., 2009. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev. 23, 1805-1817
    Ikbal, F.E., Hernandez, J.A., Barba-Espin, G., Koussa, T., Aziz, A., Faize, M., Diaz-Vivancos, P., 2014. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J. Plant Physiol. 171, 779-788
    Jayakumar, B., Ana, R.M., Shabala, S., 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65, 1241-1257
    Jung, I.L., Kim, I.G., 2003. Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem. Biophys. Res. Commun. 301, 915-922
    Kitomi, Y., Hanzawa, E., Kuya, N., Inoue, H., Hara, N., Kawai, S., Kanno, N., Endo, M., Sugimoto, P.K., Yamazaki, T., et al., 2020. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc. Natl. Acad. Sci. U. S. A. 117, 21242-21250
    Kubis, J., 2003. Polyamines and "scavenging system": influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamine level in barley leaves under water deficit. Acta Physiol. Plant. 25, 337-343
    Kumar, K., Kumar, M., Kim, S.R., Ryu, H., Cho, Y.G., 2013. Insights into genomics of salt stress response in rice. Rice 6, 1-15
    Li, J., Bao, S., Zhang, Y., Ma, X., Mishra-Knyrim, M., Sun, J., Sa, G., Shen, X., Polle, A., Chen, S., 2012. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal populus × canescens under sodium chloride stress. Plant Physiol. 159, 1771-1786
    Li, C.H., Wang, G., Zhao, J.L., Zhang, L.Q., Ai, L.F., Han, Y.F., Sun, D.Y., Zhang, S.W., Sun, Y., 2014. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26, 2538-2553
    Lin, H.X., Zhu, M.Z., Yano, M., Gao, J.P., Liang, Z.W., Su, W.A., Hu, X.H., Ren, Z.H., Chao, D.Y., 2004. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 108, 253-260
    Liu, C., Ou, S., Mao, B., Tang, J., Wang, W., Wang, H., Cao, S., Schlappi, M.R., Zhao, B., Xiao, G., et al., 2018. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat. Commun. 9, 3302
    Liu, K., Fu, H., Bei, Q., Luan, S., 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 124, 1315
    Liu, T., Kim, D.W., Niitsu, M., Berberich, T., Kusano, T., 2014a. Oryza sativa polyamine oxidase 1 back-converts tetraamines, spermine and thermospermine, to spermidine. Plant Cell Rep. 33, 143-151
    Liu, T., Kim, D.W., Niitsu, M., Maeda, S., Watanabe, M., Kamio, Y., Berberich, T., Kusano, T., 2014b. Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. Plant Cell Physiol. 55, 1110-1122
    Majee, M., Maitra, S., Ghosh, K., 2004. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) tateoka: a halophytic wild rice. J Biol. Chem. 279, 28539-28552
    Lv, Y., Shao, G., Jiao, G., Sheng, Z., Xie, L., Hu, S., Tang, S., Wei, X., Hu. P., 2021. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Mol Plant. 2, 344-351
    Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D., et al., 2015. COLD1 confers chilling tolerance in rice. Cell 160, 1209-1221
    Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453-467
    Moschou, P.N., Paschalidis, K.A., Delis, I.D., Andriopoulou, A.H., Lagiotis, G.D., Yakoumakis, D.I., Roubelakis-Angelakis, K.A., 2008b. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20, 1708-1724
    Moschou, P.N., Paschalidis, K.A., Roubelakis-Angelakis, K.A., 2008a. Plant polyamine catabolism: The state of the art. Plant Signal. Behav. 3, 1061
    Moschou, P.N., Wu, J., Cona, A., Tavladoraki, P., Angelini, R., Roubelakis-Angelakis, K.A., 2012. The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J. Exp. Bot. 63, 5003-5015
    Ono, Y., Kim, D.W., Watanabe, K., Sasaki, A., Niitsu, M., Berberich, T., Kusano, T., Takahashi, Y., 2012. Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Acids 42, 867-876
    Patterson, B.D., Macrae, E.A., Ferguson, I.B., 1984. Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal. Biochem. 139, 487-492
    Peng, H., Wang, K., Chen, Z., Cao, Y., Gao, Q., Li, Y., Li, X., Lu, H., Du, H., Lu, M., et al., 2020. MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res. 48, D1085-D1092
    Pottosin, I., Velarde-Buendia, A.M., Bose, J., Zepeda-Jazo, I., Shabala, S., Dobrovinskaya, O., 2014. Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J. Exp. Bot. 65, 1271-1283
    Qin, H., Wang, J., Chen, X.B., Wang F., Peng, P., Zhou, Y., Miao, Y., Zhang, Y., Gao, Y., Qi, Y., et al., 2019. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol. 223, 798-813
    Reddy, I.N.B.L., Kim, B.K., Yoon, I.S., Kim, K.H., Kwon, T.R., 2017. Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci. 24, 123-144
    Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y., Zhu, M.Z., Wang, Z.Y., Luan, S., Lin, H.X., 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37, 1141-1146
    Sagor, G.H., Zhang, S., Kojima, S., Simm, S., Berberich, T., Kusano, T., 2016. Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression. Front. Plant Sci. 7, 214
    Shabala, S., Cuin, T.A., Pottosin, I., 2007. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Letters 581, 1993-1999
    Takahashi, T., Kakehi, J., 2010. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 105, 1-6
    Tan, L., Liu, F., Xue, W., Wang, G., Ye, S., Zhu, Z., Fu, Y., Wang, X., Sun, C., 2007. Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. J. Integr. Plant Biol. 49, 871-884
    Tkachenko, A., Nesterova, L., Pshenichnov, M., 2001. The role of the natural polyamine putrescine in defence against oxidative stress in Escherichia coli. Arch. Microbiol. 176, 155-157
    Toumi, I., Moschou, P.N., Paschalidis, K.A., Bouamama, B., Salem-Fnayou, A., Ghorbel, A.W., Mliki, A., Roubelakis-Angelakis, K.A., 2010. Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J. Plant Physiol. 167, 519-525
    Violante-Mota, F., Tellechea, E., Moran, J.F., Sarath, G., Arredondo-Peter, R., 2010. Analysis of peroxidase activity of rice (Oryza sativa) recombinant hemoglobin 1: implications for in vivo function of hexacoordinate non-symbiotic hemoglobins in plants. Phytochemistry 71, 21–26
    Wang, T, Guo, S.R., Liu, J., 2004. An improved method for measuring polyamine oxidase and it’s application to the study of cucumber root under hypoxic stress. Plant Physiol Commun. 40, 358-360
    Wang, W., Paschalidis, K., Feng, J.C., Song, J., Liu, J.H., 2019. Polyamine catabolism in plants: a universal process with diverse functions. Front. Plant Sci. 10, 561
    Williams, K., 1997. Interactions of polyamines with ion channels. Biochem. J. 325 (Pt 2), 289
    Wimalasekera, R., Tebartz, F., Scherer, G.F., 2011. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 181, 593-603
    Xiong, H.C., Guo, H.J., Xie, Y.D., Zhao, L.S., Gu, J.Y., Zhao, S.R., Li, J.H., Liu, L.X., 2017. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci. Rep. 7, 2731
    Xu, Y., Zhang, L., Ou, S., Wang, R., Wang, Y., Chu, C., Yao, S., 2020. Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat. Commun. 11, 5441
    Yang, Q., Chen, Z.Z., Zhou, X.F., Yin, H.B., Li, X., Xin, X.F., Hong, X.H., Zhu, J.K., Gong, Z.Z., 2009. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant 2, 22–31
    Yang, Y.Q., Guo, Y., 2017. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217, 523-539
    Yu, Z., Jia, D.Y., Liu, T.B., 2019. Polyamine oxidases play various roles in plant development and abiotic stress tolerance. Plants 8, 184
    Zarza, X., Atanasov, K.E., Marco, F., Arbon, V., Carrasco, P., Kopka, J., Fotopoulos, V., Munnik, T., Gómez-Cadenas, A., Tiburcio, A.F., Alcázar, R., 2017. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant Cell Environ. 40, 527–542
    Zepeda-jazo, I., Velarde-Buendia, A.M., Dobrovinskaya, O.R., Muniz, J., Pottosin, I.I., 2008. Polyamines as regulators of ionic transport in plants. Curr. Top Dev. Biol. 9, 87-99
    Zepeda-Jazo, I., Velarde-Buendia, A.M., Enriquez-Figueroa, R., Bose, J., Shabala, S., Muniz-Murguia, J., Pottosin, I.I., 2011. Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol. 157, 2167-2180
    Zhang, Z., Li, J., Pan, Y., Li, J., Zhou, L., Shi, H., Zeng, Y., Guo, H., Yang, S., Zheng, W., et al., 2017. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat. Commun. 8, 14788
    Zhao, F., Song, C.P., He, J., Zhu, H., 2007. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol. 145, 1061-1072
    Zhao, J., Wang, S., Qin, J., Sun, C., Liu, F., 2020. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. Plant Biotechnol. J. 18, 756-769
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (354) PDF downloads (32) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return