Alcazar, R., Planas, J., Saxena, T., Zarza, X., Bortolotti, C., Cuevas, J., Bitrian, M., Tiburcio, A.F., Altabella, T., 2010. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol. Bioch. 48, 547-552
|
An, Z., Jing, W., Liu, Y., Zhang, W., 2008. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J. Exp. Bot. 59, 815-825
|
Andronis, E.A., Moschou, P.N., Toumi, I., Roubelakis-Angelakis, K.A., 2014. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. Front. Plant Sci. 5, 132
|
Angelini, R., Tisi, A., Rea, G., Chen, M.M., Botta, M., Federico, R., Cona, A., 2008. Involvement of polyamine oxidase in wound healing. Plant Physiol. 146, 162-177
|
Berberich, T., Sagor, G.H.M., Kusano, T., 2015. Polyamines in Plant Stress Response, in: Kusano T., Suzuki H. (eds) Polyamines. Springer Tokyo, pp. 155-168
|
Chattopadhyay, M.K., Tabor, C.W., Tabor, H., 2006. Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Δ mutant of Saccharomyces cerevisiae. Yeast 23, 751-761
|
Chinnusamy, V., Jagendorf, A., Zhu, J.K., 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437-448
|
Choudhury, F.K., Rivero, R.M., Blumwald, E., Mittler, R., 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867
|
Cona, A., Rea, G., Angelini, R., Federico, R., Tavladoraki, P., 2006. Functions of amine oxidases in plant development and defence. Trends Plant Sci. 11, 80-88
|
Czarnocka, W., Karpinski, S., 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 122, 4-20
|
Dai, X., Xu, Y., Ma, Q., Xu, W.Y., Wang, T., Xue, Y.B., Chong, K., 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 143, 1739-1751
|
Dobrovinskaya, O.R., Muniz, J., Pottosin, I.I., 1999. Inhibition of vacuolar ion channels by polyamines. J. Membrane Biol. 167, 127
|
Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-, salt- and cold-responsive gene expression. Plant J. 33, 751-763
|
Fincato, P., Moschou, P.N., Ahou, A., Angelini, R., Roubelakis-Angelakis, K.A., Federico, R., Tavladoraki, P., 2012. The members of Arabidopsis thaliana PAO gene family exhibit distinct tissue- and organ-specific expression pattern during seedling growth and flower development. Amino Acids 42, 831
|
Gong, B., Wang, X., Wei, M., Yang, F., Li, Y., Shi, Q., 2015. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell, Tissue Organ Cult. 124, 377-391
|
Hellens, R.P., Allan, A.C., Frie, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P., Laing, W.A., 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13
|
Hu, X., Zhang, Y., Shi, Y., Zhang, Z., Zou, Z., Zhang, H., Zhao, J., 2012. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress. Plant Physiol. Biochem. 57, 200-209
|
Huang, X.Y., Chao, D.Y., Gao, J.P., Zhu, M.Z., Shi, M., Lin, H.X., 2009. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev. 23, 1805-1817
|
Ikbal, F.E., Hernandez, J.A., Barba-Espin, G., Koussa, T., Aziz, A., Faize, M., Diaz-Vivancos, P., 2014. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J. Plant Physiol. 171, 779-788
|
Jayakumar, B., Ana, R.M., Shabala, S., 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65, 1241-1257
|
Jung, I.L., Kim, I.G., 2003. Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem. Biophys. Res. Commun. 301, 915-922
|
Kitomi, Y., Hanzawa, E., Kuya, N., Inoue, H., Hara, N., Kawai, S., Kanno, N., Endo, M., Sugimoto, P.K., Yamazaki, T., et al., 2020. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc. Natl. Acad. Sci. U. S. A. 117, 21242-21250
|
Kubis, J., 2003. Polyamines and "scavenging system": influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamine level in barley leaves under water deficit. Acta Physiol. Plant. 25, 337-343
|
Kumar, K., Kumar, M., Kim, S.R., Ryu, H., Cho, Y.G., 2013. Insights into genomics of salt stress response in rice. Rice 6, 1-15
|
Li, J., Bao, S., Zhang, Y., Ma, X., Mishra-Knyrim, M., Sun, J., Sa, G., Shen, X., Polle, A., Chen, S., 2012. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal populus × canescens under sodium chloride stress. Plant Physiol. 159, 1771-1786
|
Li, C.H., Wang, G., Zhao, J.L., Zhang, L.Q., Ai, L.F., Han, Y.F., Sun, D.Y., Zhang, S.W., Sun, Y., 2014. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26, 2538-2553
|
Lin, H.X., Zhu, M.Z., Yano, M., Gao, J.P., Liang, Z.W., Su, W.A., Hu, X.H., Ren, Z.H., Chao, D.Y., 2004. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 108, 253-260
|
Liu, C., Ou, S., Mao, B., Tang, J., Wang, W., Wang, H., Cao, S., Schlappi, M.R., Zhao, B., Xiao, G., et al., 2018. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat. Commun. 9, 3302
|
Liu, K., Fu, H., Bei, Q., Luan, S., 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 124, 1315
|
Liu, T., Kim, D.W., Niitsu, M., Berberich, T., Kusano, T., 2014a. Oryza sativa polyamine oxidase 1 back-converts tetraamines, spermine and thermospermine, to spermidine. Plant Cell Rep. 33, 143-151
|
Liu, T., Kim, D.W., Niitsu, M., Maeda, S., Watanabe, M., Kamio, Y., Berberich, T., Kusano, T., 2014b. Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. Plant Cell Physiol. 55, 1110-1122
|
Majee, M., Maitra, S., Ghosh, K., 2004. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) tateoka: a halophytic wild rice. J Biol. Chem. 279, 28539-28552
|
Lv, Y., Shao, G., Jiao, G., Sheng, Z., Xie, L., Hu, S., Tang, S., Wei, X., Hu. P., 2021. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Mol Plant. 2, 344-351
|
Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D., et al., 2015. COLD1 confers chilling tolerance in rice. Cell 160, 1209-1221
|
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453-467
|
Moschou, P.N., Paschalidis, K.A., Delis, I.D., Andriopoulou, A.H., Lagiotis, G.D., Yakoumakis, D.I., Roubelakis-Angelakis, K.A., 2008b. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20, 1708-1724
|
Moschou, P.N., Paschalidis, K.A., Roubelakis-Angelakis, K.A., 2008a. Plant polyamine catabolism: The state of the art. Plant Signal. Behav. 3, 1061
|
Moschou, P.N., Wu, J., Cona, A., Tavladoraki, P., Angelini, R., Roubelakis-Angelakis, K.A., 2012. The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J. Exp. Bot. 63, 5003-5015
|
Ono, Y., Kim, D.W., Watanabe, K., Sasaki, A., Niitsu, M., Berberich, T., Kusano, T., Takahashi, Y., 2012. Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Acids 42, 867-876
|
Patterson, B.D., Macrae, E.A., Ferguson, I.B., 1984. Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal. Biochem. 139, 487-492
|
Peng, H., Wang, K., Chen, Z., Cao, Y., Gao, Q., Li, Y., Li, X., Lu, H., Du, H., Lu, M., et al., 2020. MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res. 48, D1085-D1092
|
Pottosin, I., Velarde-Buendia, A.M., Bose, J., Zepeda-Jazo, I., Shabala, S., Dobrovinskaya, O., 2014. Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J. Exp. Bot. 65, 1271-1283
|
Qin, H., Wang, J., Chen, X.B., Wang F., Peng, P., Zhou, Y., Miao, Y., Zhang, Y., Gao, Y., Qi, Y., et al., 2019. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol. 223, 798-813
|
Reddy, I.N.B.L., Kim, B.K., Yoon, I.S., Kim, K.H., Kwon, T.R., 2017. Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci. 24, 123-144
|
Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y., Zhu, M.Z., Wang, Z.Y., Luan, S., Lin, H.X., 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37, 1141-1146
|
Sagor, G.H., Zhang, S., Kojima, S., Simm, S., Berberich, T., Kusano, T., 2016. Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression. Front. Plant Sci. 7, 214
|
Shabala, S., Cuin, T.A., Pottosin, I., 2007. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Letters 581, 1993-1999
|
Takahashi, T., Kakehi, J., 2010. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 105, 1-6
|
Tan, L., Liu, F., Xue, W., Wang, G., Ye, S., Zhu, Z., Fu, Y., Wang, X., Sun, C., 2007. Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. J. Integr. Plant Biol. 49, 871-884
|
Tkachenko, A., Nesterova, L., Pshenichnov, M., 2001. The role of the natural polyamine putrescine in defence against oxidative stress in Escherichia coli. Arch. Microbiol. 176, 155-157
|
Toumi, I., Moschou, P.N., Paschalidis, K.A., Bouamama, B., Salem-Fnayou, A., Ghorbel, A.W., Mliki, A., Roubelakis-Angelakis, K.A., 2010. Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J. Plant Physiol. 167, 519-525
|
Violante-Mota, F., Tellechea, E., Moran, J.F., Sarath, G., Arredondo-Peter, R., 2010. Analysis of peroxidase activity of rice (Oryza sativa) recombinant hemoglobin 1: implications for in vivo function of hexacoordinate non-symbiotic hemoglobins in plants. Phytochemistry 71, 21–26
|
Wang, T, Guo, S.R., Liu, J., 2004. An improved method for measuring polyamine oxidase and it’s application to the study of cucumber root under hypoxic stress. Plant Physiol Commun. 40, 358-360
|
Wang, W., Paschalidis, K., Feng, J.C., Song, J., Liu, J.H., 2019. Polyamine catabolism in plants: a universal process with diverse functions. Front. Plant Sci. 10, 561
|
Williams, K., 1997. Interactions of polyamines with ion channels. Biochem. J. 325 (Pt 2), 289
|
Wimalasekera, R., Tebartz, F., Scherer, G.F., 2011. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 181, 593-603
|
Xiong, H.C., Guo, H.J., Xie, Y.D., Zhao, L.S., Gu, J.Y., Zhao, S.R., Li, J.H., Liu, L.X., 2017. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci. Rep. 7, 2731
|
Xu, Y., Zhang, L., Ou, S., Wang, R., Wang, Y., Chu, C., Yao, S., 2020. Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat. Commun. 11, 5441
|
Yang, Q., Chen, Z.Z., Zhou, X.F., Yin, H.B., Li, X., Xin, X.F., Hong, X.H., Zhu, J.K., Gong, Z.Z., 2009. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant 2, 22–31
|
Yang, Y.Q., Guo, Y., 2017. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217, 523-539
|
Yu, Z., Jia, D.Y., Liu, T.B., 2019. Polyamine oxidases play various roles in plant development and abiotic stress tolerance. Plants 8, 184
|
Zarza, X., Atanasov, K.E., Marco, F., Arbon, V., Carrasco, P., Kopka, J., Fotopoulos, V., Munnik, T., Gómez-Cadenas, A., Tiburcio, A.F., Alcázar, R., 2017. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant Cell Environ. 40, 527–542
|
Zepeda-jazo, I., Velarde-Buendia, A.M., Dobrovinskaya, O.R., Muniz, J., Pottosin, I.I., 2008. Polyamines as regulators of ionic transport in plants. Curr. Top Dev. Biol. 9, 87-99
|
Zepeda-Jazo, I., Velarde-Buendia, A.M., Enriquez-Figueroa, R., Bose, J., Shabala, S., Muniz-Murguia, J., Pottosin, I.I., 2011. Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol. 157, 2167-2180
|
Zhang, Z., Li, J., Pan, Y., Li, J., Zhou, L., Shi, H., Zeng, Y., Guo, H., Yang, S., Zheng, W., et al., 2017. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat. Commun. 8, 14788
|
Zhao, F., Song, C.P., He, J., Zhu, H., 2007. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol. 145, 1061-1072
|
Zhao, J., Wang, S., Qin, J., Sun, C., Liu, F., 2020. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. Plant Biotechnol. J. 18, 756-769
|