5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 5
May  2022
Turn off MathJax
Article Contents

Nitrogen assimilation in plants: current status and future prospects

doi: 10.1016/j.jgg.2021.12.006
Funds:

This work was supported by the Major Program of Guangdong Basic and Applied Research (2019B030302006).

  • Received Date: 2021-10-13
  • Accepted Date: 2021-12-23
  • Rev Recd Date: 2021-11-30
  • Publish Date: 2021-12-30
  • Nitrogen (N) is the driving force for crop yields; however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoyl phosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops—rice, maize, and wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed.
  • loading
  • Bao, A., Zhao, Z., Ding, G., Shi, L., Xu, F.,Cai, H., 2014. Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS One 9, e95581
    Bao, A., Zhao, Z., Ding, G., Shi, L., Xu, F.,Cai, H., 2015. The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance. Int. J. Mol. Sci. 16, 12713-12736
    Becker, T.W., Carrayol, E.,Hirel, B., 2000. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta 211, 800-806
    Bernard, S.M., Moeller, A.L., Dionisio, G., Kichey, T., Jahn, T.P., Dubois, F., Baudo, M., Lopes, M.S., Terce-Laforgue, T., Foyer, C.H., et al., 2008. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol. Biol. 67, 89-105
    Brauer, E.K., Rochon, A., Bi, Y.-M., Bozzo, G.G., Rothstein, S.J.,Shelp, B.J., 2011. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol. Plant. 141, 361-372
    Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q.,Lian, X., 2009. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 28, 527-537
    Canas, R.A., Quillere, I., Lea, P.J.,Hirel, B., 2010. Analysis of amino acid metabolism in the ear of maize mutants deficient in two cytosolic glutamine synthetase isoenzymes highlights the importance of asparagine for nitrogen translocation within sink organs. Plant Biotechnol. J. 8, 966-978
    Chandok, M.R.,Sopory, S.K., 1996. Phosphorylayion/dephosphorylation steps are key events in the phytochrome-mediated enhancement of nitrate reductase mRNA levels and enzyme activity in maize. Mol. Gen. Genet. 251, 599-608
    Chen, X., Yao, Q., Gao, X., Jiang, C., Harberd, N.P.,Fu, X., 2016. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 26, 640-646
    Cheng, C.L., Acedo, G.N., Dewdney, J., Goodman, H.M.,Conkling, M.A., 1991. Differential expression of the two Arabidopsis nitrate reductase genes. Plant Physiol. 96, 275-279
    Coschigano, K.T., Melo-Oliveira, R., Lim, J.,Coruzzi, G.M., 1998. Arabidopsis gls mutants and distinct FD-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10, 741-752
    Creighton, M.T., Sanmartin, M., Kataya, A.R.A., Averkina, I.O., Heidari, B., Nemie-Feyissa, D., Sanchez-Serrano, J.J.,Lillo, C., 2017. Light regulation of nitrate reductase by catalytic subunits of protein phosphatase 2A. Planta 246, 701-710
    El-Kereamy, A., Bi, Y.M., Ranathunge, K., Beatty, P.H., Good, A.G.,Rothstein, S.J., 2012. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One 7, e52030
    Ferreira, S., Moreira, E., Amorim, I., Santos, C.,Melo, P., 2019. Arabidopsis thaliana mutants devoid of chloroplast glutamine synthetase (GS2) have non-lethal phenotype under photorespiratory conditions. Plant Physiol. Biochem. 144, 365-374
    Fontaine, J.X., Terce-Laforgue, T., Armengaud, P., Clement, G., Renou, J.P., Pelletier, S., Catterou, M., Azzopardi, M., Gibon, Y., Lea, P.J., et al., 2012. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell 24, 4044-4065
    Forde, B.G.,Lea, P.J., 2007. Glutamate in plants: metabolism, regulation, and signalling. J. Exp. Bot. 58, 2339-2358
    Funayama, K., Kojima, S., Tabuchi-Kobayashi, M., Sawa, Y., Nakayama, Y., Hayakawa, T.,Yamaya, T., 2013. Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol. 54, 934-943
    Gao, Z., Wang, Y., Chen, G., Zhang, A., Yang, S., Shang, L., Wang, D., Ruan, B., Liu, C., Jiang, H., et al., 2019. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat. Commun. 10, 5207
    Gaufichon, L., Marmagne, A., Belcram, K., Yoneyama, T., Sakakibara, Y., Hase, T., Grandjean, O., Clement, G., Citerne, S., Boutet-Mercey, S., et al., 2017. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. Plant J. 91, 371-393
    Gaufichon, L., Marmagne, A., Yoneyama, T., Hase, T., Clement, G., Trassaert, M., Xu, X., Shakibaei, M., Najihi, A.,Suzuki, A., 2016. Impact of the disruption of ASN3-encoding asparagine synthetase on Arabidopsis development. Agronomy 6, 12
    Gaufichon, L., Masclaux-Daubresse, C., Tcherkez, G., Reisdorf-Cren, M., Sakakibara, Y., Hase, T., Clement, G., Avice, J.C., Grandjean, O., Marmagne, A., et al., 2013. Arabidopsis thaliana ASN2 encoding asparagine synthetase is involved in the control of nitrogen assimilation and export during vegetative growth. Plant Cell Environ. 36, 328-342
    Ge, M., Wang, Y., Liu, Y., Jiang, L., He, B., Ning, L., Du, H., Lv, Y., Zhou, L., Lin, F., et al., 2020. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. Plant J. 102, 353-368
    Guan, M., de Bang, T.C., Pedersen, C.,Schjoerring, J.K., 2016. Cytosolic glutamine synthetase Gln1;2 is the main isozyme contributing to GS1 activity and can be up-regulated to relieve ammonium toxicity. Plant Physiol. 171, 1921-1933
    Guan, P., Wang, R., Nacry, P., Breton, G., Kay, S.A., Pruneda-Paz, J.L., Davani, A.,Crawford, N.M., 2014. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc. Natl. Acad. Sci. USA. 111, 15267-15272
    Guo, M., Wang, Q., Zong, Y., Nian, J., Li, H., Li, J., Wang, T., Gao, C.,Zuo, J., 2021. Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat. J. Genet. Genomics. 48, 950-953
    Gutierrez, R.A., Stokes, T.L., Thum, K., Xu, X., Obertello, M., Katari, M.S., Tanurdzic, M., Dean, A., Nero, D.C., McClung, C.R., et al., 2008. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc. Natl. Sci. USA. 105, 4939-4944
    Han, M.L., Lv, Q.Y., Zhang, J., Wang, T., Zhang, C.X., Tan, R.J., Wang, Y.L., Zhong, L.Y., Gao, Y.Q., Chao, Z.F., et al., 2021. Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of nitrate reductase 1.2 in rice. Mol. Plant. Doi: https://doi.org/10.1016/j.molp.2021.09.005
    Hanson, J., Hanssen, M., Wiese, A., Hendriks, M.M.,Smeekens, S., 2008. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J. 53, 935-949
    Have, M., Marmagne, A., Chardon, F.,Masclaux-Daubresse, C., 2017. Nitrogen remobilization during leaf senescence: Lessons from Arabidopsis to crops. J Exp Bot 68, 2513-2529
    He, X., Qu, B., Li, W., Zhao, X., Teng, W., Ma, W., Ren, Y., Li, B., Li, Z.,Tong, Y., 2015. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol. 169, 1991-2005
    Heidari, B., Matre, P., Nemie-Feyissa, D., Meyer, C., Rognli, O.A., Moeller, S.G.,Lillo, C., 2011. Protein phosphatase 2A B55 and A regulatory subunits interact with nitrate reductase and are essential for nitrate reductase activation. Plant Physiol. 156, 165-172
    Hirel, B., Bertin, P., Quillere, I., Bourdoncle, W., Attagnant, C., Dellay, C., Gouy, A., Cadiou, S., Retailliau, C., Falque, M., et al., 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efiiciency in maize. Plant Physiol. 125, 1258-1270
    Hirel, B., Le Gouis, J., Ney, B.,Gallais, A., 2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 58, 2369-2387
    Hodges, M., 2002. Enzyme redundancy and importance of 2-oxoglutarate in plant ammonium assimilation. J. Exp. Bot. 53, 905-916
    Hu, M., Zhao, X., Liu, Q., Hong, X., Zhang, W., Zhang, Y., Sun, L., Li, H.,Tong, Y., 2018. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol. J. 16, 1858-1867
    Hudson, D., Guevara, D., Yaish, M.W., Hannam, C., Long, N., Clarke, J.D., Bi, Y.M.,Rothstein, S.J., 2011. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLoS One 6, e26765
    Ishiyama, K., Inoue, E., Tabuchi, M., Yamaya, T.,Takahashi, H., 2004a. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol. 45, 1640-1647
    Ishiyama, K., Inoue, E., Watanabe-Takahashi, A., Obara, M., Yamaya, T.,Takahashi, H., 2004b. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J. Biol. Chem. 279, 16598-16605
    Ishiyama, K., Kojima, S., Takahashi, H., Hayakawa, T.,Yamaya, T., 2003. Cell type distinct accumulations of mRNA and protein for NADH-dependent glutamate synthase in rice roots in response to the supply of NH4+. Plant Physiol. Bioch. 41, 643-647
    Jamai, A., Salome, P.A., Schilling, S.H., Weber, A.P.,McClung, C.R., 2009. Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell 21, 595-606
    Jiang, Y.L., Wang, X.P., Sun, H., Han, S.J., Li, W.F., Cui, N., Lin, G.M., Zhang, J.Y., Cheng, W., Cao, D.D., et al., 2018. Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc. Natl. Acad. Sci. USA. 115, 403-408
    Jonassen, E.M., Sevin, D.C.,Lillo, C., 2009. The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. J. Plant Physiol. 166, 2071-2076
    Kaufholdt, D., Baillie, C.-K., Meyer, M.H., Schwich, O.D., Timmerer, U.L., Tobias, L., van Thiel, D., Hansch, R.,Mendel, R.R., 2016. Identification of a protein-protein interaction network downstream of molybdenum cofactor biosynthesis in Arabidopsis thaliana. J. Plant Physiol. 207, 42-50
    Kim, J.Y., Kwon, Y.J., Kim, S.I., Kim, D.Y., Song, J.T.,Seo, H.S., 2015. Ammonium inhibits chromomethylase 3-mediated methylation of the Arabidopsis nitrate reductase gene NIA2. Front. Plant Sci. 6, 1161
    Konishi, M.,Yanagisawa, S., 2013. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat. Commun. 4, 1617
    Konishi, N., Ishiyama, K., Beier, M.P., Inoue, E., Kanno, K., Yamaya, T., Takahashi, H.,Kojima, S., 2017. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. J. Exp. Bot. 68, 613-625
    Konishi, N., Ishiyama, K., Matsuoka, K., Maru, I., Hayakawa, T., Yamaya, T.,Kojima, S., 2014. NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root. Physiol. Plant. 152, 138-151
    Konishi, N., Saito, M., Imagawa, F., Kanno, K., Yamaya, T.,Kojima, S., 2018. Cytosolic glutamine synthetase isozymes play redundant roles in ammonium assimilation under low-ammonium conditions in roots of Arabidopsis thaliana. Plant Cell Physiol. 59, 601-613
    Lambeck, I., Chi, J.C., Krizowski, S., Mueller, S., Mehlmer, N., Teige, M., Fischer, K.,Schwarz, G., 2010. Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase. Biochemistry 49, 8177-8186
    Lambeck, I.C., Fischer-Schrader, K., Niks, D., Roeper, J., Chi, J.C., Hille, R.,Schwarz, G., 2012. Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase. J. Biol. Chem. 287, 4562-4571
    Lee, H.M., Flores, E., Forchhammer, K., Herrero, A.,Tandeau de Marsac, N., 2000. Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-meidated regulation of nitrate and nitrite uptake in the cyanobacterium synechococcus sp. PCC 7942. Eur. J. Biochem. 267, 591-600
    Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I.,Deng, X.W., 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731-749
    Lee, S., Marmagne, A., Park, J., Fabien, C., Yim, Y., Kim, S.J., Kim, T.H., Lim, P.O., Masclaux-Daubresse, C.,Nam, H.G., 2020a. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J. 103, 7-20
    Lee, S., Park, J., Lee, J., Shin, D., Marmagne, A., Lim, P.O., Masclaux-Daubresse, C., An, G.,Nam, H.G., 2020b. OsASN1 overexpression in rice increases grain protein content and yield under nitrogen-limiting conditions. Plant Cell Physiol. 61, 1309-1320
    Li, H., Hu, B.,Chu, C., 2017. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J. Exp. Bot. 68, 2477-2488
    Li, R.J., Hua, W.,Lu, Y.T., 2006. Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem. Biophys. Res. Commun. 342, 119-126
    Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., et al., 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600
    Lima, L., Seabra, A., Melo, P., Cullimore, J.,Carvalho, H., 2006. Phosphorylation and subsequent interaction with 14-3-3 proteins regulate plastid glutamine synthetase in Medicago truncatula. Planta 223, 558-567
    Lothier, J., Gaufichon, L., Sormani, R., Lemaitre, T., Azzopardi, M., Morin, H., Chardon, F., Reisdorf-Cren, M., Avice, J.C.,Masclaux-Daubresse, C., 2011. The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. J. Exp. Bot. 62, 1375-1390
    Marchi, L., Degola, F., Polverini, E., Terce-Laforgue, T., Dubois, F., Hirel, B.,Restivo, F.M., 2013. Glutamate dehydrogenase isoenzyme 3 (GHD3) of Arabidopsis thaliana is regulated by a combined effect of nitrogen and cytokinin. Plant Physiol. Biochem. 73, 368-374
    Marchive, C., Roudier, F., Castaings, L., Brehaut, V., Blondet, E., Colot, V., Meyer, C.,Krapp, A., 2013. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 4, 1713
    Martin, A., Lee, J., Kichey, T., Gerentes, D., Zivy, M., Tatout, C., Dubois, F., Balliau, T., Valot, B., Davanture, M., et al., 2006. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18, 3252-3274
    Melo-Oliveira, R., Olivera, I.C.,Coruzzi, G.M., 1996. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc. Natl. Acad. Sci. USA. 93, 4718-4723
    Melo, P.M., Silva, L.S., Ribeiro, I., Seabra, A.R.,Carvalho, H.G., 2011. Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration. Plant Physiol. 157, 1505-1517
    Miyashita, Y.,Good, A.G., 2008. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J. Exp. Bot. 59, 667-680
    Moison, M., Marmagne, A., Dinant, S., Soulay, F., Azzopardi, M., Lothier, J., Citerne, S., Morin, H., Legay, N., Chardon, F., et al., 2018. Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis. J. Exp. Bot. 69, 4379-4393
    Molla-Morales, A., Sarmiento-Manus, R., Robles, P., Quesada, V., Perez-Perez, J.M., Gonzalez-Bayon, R., Hannah, M.A., Willmitzer, L., Ponce, M.R.,Micol, J.L., 2011. Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. Plant J. 65, 335-345
    Ohashi, M., Ishiyama, K., Kojima, S., Konishi, N., Nakano, K., Kanno, K., Hayakawa, T.,Yamaya, T., 2015. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant Cell Physiol. 56, 769-778
    Palatnik, J.F., Carrillo, N.,Valle, E.M., 1999. The role of photosynthetic electron transport in the oxidative degradation of chloroplastic glutamine synthetase. Plant Physiol. 121, 471-478
    Park, B.S., Song, J.T.,Seo, H.S., 2011. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat. Commun. 2, 400
    Polge, C., Jossier, M., Crozet, P., Gissot, L.,Thomas, M., 2008. β-subunits of the SnRK1 complexes share a common ancestral function together with expression and function specificities; physical interaction with nitrate reductase specifically occurs via AKINβ1-subunit. Plant Physiol. 148, 1570-1582
    Potel, F., Valadier, M.H., Ferrario-Mery, S., Grandjean, O., Morin, H., Gaufichon, L., Boutet-Mercey, S., Lothier, J., Rothstein, S.J., Hirose, N., et al., 2009. Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana--roles of glutamate synthases and carbamoylphosphate synthetase in leaves. FEBS J. 276, 4061-4076
    Prinsi, B.,Espen, L., 2015. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. BMC Plant Biol. 15, 96
    Raffan, S., Sparks, C., Huttly, A., Hyde, L., Martignago, D., Mead, A., Hanley, S.J., Wilkinson, P.A., Barker, G., Edwards, K.J., et al., 2021. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol. J. 19, 1602-1613
    Rastogi, R., Chourey, P.S.,Muhitch, M.J., 1998. The maize glutamine synthetase GS1-2 gene is preferentially expressed in kernel pedicels and is developmentally-regulated. Plant Cell Physiol. 39, 443-446
    Raun, W.R.,Johnson, G.V., 1999. Improving nitrogen use efficiency for cereal production. Agron. J. 91, 357-363
    Redinbaugh, M.G.,Campbell, W.H., 1993. Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (zea mays) root primary resopnse to nitrate (evidence for an organ-specific response). Plant Physiol. 101, 1249-1255
    Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W.,Baginsky, S., 2009. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 150, 889-903
    Silva, L.S., Alves, M.Q., Seabra, A.R.,Carvalho, H.G., 2019. Characterization of plant glutamine synthetase S-nitrosation. Nitric Oxide 88, 73-86
    Sun, L., Wang, Y., Liu, L.L., Wang, C., Gan, T., Zhang, Z., Wang, Y., Wang, D., Niu, M., Long, W., et al., 2017. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Sci. Rep. 7, 41846
    Tabuchi, M., Sugiyama, K., Ishiyama, K., Inoue, E., Sato, T., Takahashi, H.,Yamaya, T., 2005. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J. 42, 641-651
    Taira, M., Valtersson, U., Burkhardt, B.,Ludwig, R.A., 2004. Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16, 2048-2058
    Tamura, W., Hidaka, Y., Tabuchi, M., Kojima, S., Hayakawa, T., Sato, T., Obara, M., Kojima, M., Sakakibara, H.,Yamaya, T., 2010. Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids 39, 1003-1012
    Tamura, W., Kojima, S., Toyokawa, A., Watanabe, H., Tabuchi-Kobayashi, M., Hayakawa, T.,Yamaya, T., 2011. Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front. Plant Sci. 2, 57
    Thomsen, H.C., Eriksson, D., Moeller, I.S.,Schjoerring, J.K., 2014. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci. 19, 656-663
    Tokizawa, M., Enomoto, T., Ito, H., Wu, L., Kobayashi, Y., Mora-Macias, J., Armenta-Medina, D., Iuchi, S., Kobayashi, M., Nomoto, M., et al., 2021. High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes GDH1 and GDH2 in Arabidopsis. J. Exp. Bot. 72, 2769-2789
    Tsai, K.J., Lin, C.Y., Ting, C.Y.,Shih, M.C., 2016. Ethylene-regulated glutamate dehydrogenase fine-tunes metabolism during anoxia-reoxygenation. Plant Physiol. 172, 1548-1562
    Wang, P., Du, Y., Li, Y., Ren, D.,Song, C.P., 2010. Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22, 2981-2998
    Wang, Q., Nian, J., Xie, X., Yu, H., Zhang, J., Bai, J., Dong, G., Hu, J., Bai, B., Chen, L., et al., 2018. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat. Commun. 9, 735
    Wang, Q., Su, Q., Nian, J., Zhang, J., Guo, M., Dong, G., Hu, J., Wang, R., Wei, C., Li, G., et al., 2021a. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Mol. Plant 14, 1012-1023
    Wei, Y., Wang, X., Zhang, Z., Xiong, S., Meng, X., Zhang, J., Wang, L., Zhang, X., Yu, M.,Ma, X., 2020. Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat (Triticum aestivum L.). Int. J. Mol. Sci. 21, 6299
    Wei, Y., Xiong, S., Zhang, Z., Meng, X., Wang, L., Zhang, X., Yu, M., Yu, H., Wang, X.,Ma, X., 2021. Localization, gene expression, and functions of glutamine synthetase isozymes in wheat grain (Triticum aestivum L.). Front. Plant Sci. 12, 580405
    Wilkinson, J.Q.,Crawford, N.M., 1993. Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol. Gen. Genet. 239, 289-297
    Wong, H.-K., Chan, H.-K., Coruzzi, G.M.,Lam, H.-M., 2004. Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiol. 134, 332-338
    Wu, J., Zhang, Z.S., Xia, J.Q., Alfatih, A., Song, Y., Huang, Y.J., Wan, G.Y., Sun, L.Q., Tang, H., Liu, Y., et al., 2021. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol. J. 19, 448-461
    Xiong, Y., Ren, Y., Li, W., Wu, F., Yang, W., Huang, X.,Yao, J., 2019. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. J. Exp. Bot. 70, 3765-3780
    Yamaya, T.,Kusano, M., 2014. Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice. J. Exp. Bot. 65, 5519-5525
    Yamaya, T., Obara, M., Nakajima, H., Sasaki, S., Hayakawa, T.,Sato, T., 2002. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Exp. Bot. 53, 917-925
    Yaneva, I.A., Hoffmann, G.W.,Tischner, R., 2002. Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiol. Plant. 114, 65-72
    Yang, J., Wang, M., Li, W., He, X., Teng, W., Ma, W., Zhao, X., Hu, M., Li, H., Zhang, Y., et al., 2019. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J. 17, 1823-1833
    Yang, X., Nian, J., Xie, Q., Feng, J., Zhang, F., Jing, H., Zhang, J., Dong, G., Liang, Y., Peng, J., et al., 2016. Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol. Plant 9, 1520-1534
    Yu, J., Xuan, W., Tian, Y., Fan, L., Sun, J., Tang, W., Chen, G., Wang, B., Liu, Y., Wu, W., et al., 2021. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol. J. 19, 167-176
    Zeng, D.D., Qin, R., Li, M., Alamin, M., Jin, X.L., Liu, Y.,Shi, C.H., 2017. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol. Genet. Genomics 292, 385-395
    Zhang, J., Zhang, H., Li, S., Li, J., Yan, L.,Xia, L., 2021a. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J. Integr. Plant Biol. 63, 1649-1663
    Zhang, S., Zhang, Y., Li, K., Yan, M., Zhang, J., Yu, M., Tang, S., Wang, L., Qu, H., Luo, L., et al., 2021b. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice. Curr. Biol. 31, 671-683
    Zhang, W., Fan, X., Gao, Y., Liu, L., Sun, L., Su, Q., Han, J., Zhang, N., Cui, F., Ji, J., et al., 2017. Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat. Sci. Rep. 7, 44677
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (833) PDF downloads (148) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return