Bao, A., Zhao, Z., Ding, G., Shi, L., Xu, F.,Cai, H., 2014. Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS One 9, e95581
|
Bao, A., Zhao, Z., Ding, G., Shi, L., Xu, F.,Cai, H., 2015. The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance. Int. J. Mol. Sci. 16, 12713-12736
|
Becker, T.W., Carrayol, E.,Hirel, B., 2000. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta 211, 800-806
|
Bernard, S.M., Moeller, A.L., Dionisio, G., Kichey, T., Jahn, T.P., Dubois, F., Baudo, M., Lopes, M.S., Terce-Laforgue, T., Foyer, C.H., et al., 2008. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol. Biol. 67, 89-105
|
Brauer, E.K., Rochon, A., Bi, Y.-M., Bozzo, G.G., Rothstein, S.J.,Shelp, B.J., 2011. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol. Plant. 141, 361-372
|
Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q.,Lian, X., 2009. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 28, 527-537
|
Canas, R.A., Quillere, I., Lea, P.J.,Hirel, B., 2010. Analysis of amino acid metabolism in the ear of maize mutants deficient in two cytosolic glutamine synthetase isoenzymes highlights the importance of asparagine for nitrogen translocation within sink organs. Plant Biotechnol. J. 8, 966-978
|
Chandok, M.R.,Sopory, S.K., 1996. Phosphorylayion/dephosphorylation steps are key events in the phytochrome-mediated enhancement of nitrate reductase mRNA levels and enzyme activity in maize. Mol. Gen. Genet. 251, 599-608
|
Chen, X., Yao, Q., Gao, X., Jiang, C., Harberd, N.P.,Fu, X., 2016. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 26, 640-646
|
Cheng, C.L., Acedo, G.N., Dewdney, J., Goodman, H.M.,Conkling, M.A., 1991. Differential expression of the two Arabidopsis nitrate reductase genes. Plant Physiol. 96, 275-279
|
Coschigano, K.T., Melo-Oliveira, R., Lim, J.,Coruzzi, G.M., 1998. Arabidopsis gls mutants and distinct FD-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10, 741-752
|
Creighton, M.T., Sanmartin, M., Kataya, A.R.A., Averkina, I.O., Heidari, B., Nemie-Feyissa, D., Sanchez-Serrano, J.J.,Lillo, C., 2017. Light regulation of nitrate reductase by catalytic subunits of protein phosphatase 2A. Planta 246, 701-710
|
El-Kereamy, A., Bi, Y.M., Ranathunge, K., Beatty, P.H., Good, A.G.,Rothstein, S.J., 2012. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One 7, e52030
|
Ferreira, S., Moreira, E., Amorim, I., Santos, C.,Melo, P., 2019. Arabidopsis thaliana mutants devoid of chloroplast glutamine synthetase (GS2) have non-lethal phenotype under photorespiratory conditions. Plant Physiol. Biochem. 144, 365-374
|
Fontaine, J.X., Terce-Laforgue, T., Armengaud, P., Clement, G., Renou, J.P., Pelletier, S., Catterou, M., Azzopardi, M., Gibon, Y., Lea, P.J., et al., 2012. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell 24, 4044-4065
|
Forde, B.G.,Lea, P.J., 2007. Glutamate in plants: metabolism, regulation, and signalling. J. Exp. Bot. 58, 2339-2358
|
Funayama, K., Kojima, S., Tabuchi-Kobayashi, M., Sawa, Y., Nakayama, Y., Hayakawa, T.,Yamaya, T., 2013. Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol. 54, 934-943
|
Gao, Z., Wang, Y., Chen, G., Zhang, A., Yang, S., Shang, L., Wang, D., Ruan, B., Liu, C., Jiang, H., et al., 2019. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat. Commun. 10, 5207
|
Gaufichon, L., Marmagne, A., Belcram, K., Yoneyama, T., Sakakibara, Y., Hase, T., Grandjean, O., Clement, G., Citerne, S., Boutet-Mercey, S., et al., 2017. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. Plant J. 91, 371-393
|
Gaufichon, L., Marmagne, A., Yoneyama, T., Hase, T., Clement, G., Trassaert, M., Xu, X., Shakibaei, M., Najihi, A.,Suzuki, A., 2016. Impact of the disruption of ASN3-encoding asparagine synthetase on Arabidopsis development. Agronomy 6, 12
|
Gaufichon, L., Masclaux-Daubresse, C., Tcherkez, G., Reisdorf-Cren, M., Sakakibara, Y., Hase, T., Clement, G., Avice, J.C., Grandjean, O., Marmagne, A., et al., 2013. Arabidopsis thaliana ASN2 encoding asparagine synthetase is involved in the control of nitrogen assimilation and export during vegetative growth. Plant Cell Environ. 36, 328-342
|
Ge, M., Wang, Y., Liu, Y., Jiang, L., He, B., Ning, L., Du, H., Lv, Y., Zhou, L., Lin, F., et al., 2020. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. Plant J. 102, 353-368
|
Guan, M., de Bang, T.C., Pedersen, C.,Schjoerring, J.K., 2016. Cytosolic glutamine synthetase Gln1;2 is the main isozyme contributing to GS1 activity and can be up-regulated to relieve ammonium toxicity. Plant Physiol. 171, 1921-1933
|
Guan, P., Wang, R., Nacry, P., Breton, G., Kay, S.A., Pruneda-Paz, J.L., Davani, A.,Crawford, N.M., 2014. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc. Natl. Acad. Sci. USA. 111, 15267-15272
|
Guo, M., Wang, Q., Zong, Y., Nian, J., Li, H., Li, J., Wang, T., Gao, C.,Zuo, J., 2021. Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat. J. Genet. Genomics. 48, 950-953
|
Gutierrez, R.A., Stokes, T.L., Thum, K., Xu, X., Obertello, M., Katari, M.S., Tanurdzic, M., Dean, A., Nero, D.C., McClung, C.R., et al., 2008. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc. Natl. Sci. USA. 105, 4939-4944
|
Han, M.L., Lv, Q.Y., Zhang, J., Wang, T., Zhang, C.X., Tan, R.J., Wang, Y.L., Zhong, L.Y., Gao, Y.Q., Chao, Z.F., et al., 2021. Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of nitrate reductase 1.2 in rice. Mol. Plant. Doi: https://doi.org/10.1016/j.molp.2021.09.005
|
Hanson, J., Hanssen, M., Wiese, A., Hendriks, M.M.,Smeekens, S., 2008. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J. 53, 935-949
|
Have, M., Marmagne, A., Chardon, F.,Masclaux-Daubresse, C., 2017. Nitrogen remobilization during leaf senescence: Lessons from Arabidopsis to crops. J Exp Bot 68, 2513-2529
|
He, X., Qu, B., Li, W., Zhao, X., Teng, W., Ma, W., Ren, Y., Li, B., Li, Z.,Tong, Y., 2015. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol. 169, 1991-2005
|
Heidari, B., Matre, P., Nemie-Feyissa, D., Meyer, C., Rognli, O.A., Moeller, S.G.,Lillo, C., 2011. Protein phosphatase 2A B55 and A regulatory subunits interact with nitrate reductase and are essential for nitrate reductase activation. Plant Physiol. 156, 165-172
|
Hirel, B., Bertin, P., Quillere, I., Bourdoncle, W., Attagnant, C., Dellay, C., Gouy, A., Cadiou, S., Retailliau, C., Falque, M., et al., 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efiiciency in maize. Plant Physiol. 125, 1258-1270
|
Hirel, B., Le Gouis, J., Ney, B.,Gallais, A., 2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 58, 2369-2387
|
Hodges, M., 2002. Enzyme redundancy and importance of 2-oxoglutarate in plant ammonium assimilation. J. Exp. Bot. 53, 905-916
|
Hu, M., Zhao, X., Liu, Q., Hong, X., Zhang, W., Zhang, Y., Sun, L., Li, H.,Tong, Y., 2018. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol. J. 16, 1858-1867
|
Hudson, D., Guevara, D., Yaish, M.W., Hannam, C., Long, N., Clarke, J.D., Bi, Y.M.,Rothstein, S.J., 2011. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLoS One 6, e26765
|
Ishiyama, K., Inoue, E., Tabuchi, M., Yamaya, T.,Takahashi, H., 2004a. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol. 45, 1640-1647
|
Ishiyama, K., Inoue, E., Watanabe-Takahashi, A., Obara, M., Yamaya, T.,Takahashi, H., 2004b. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J. Biol. Chem. 279, 16598-16605
|
Ishiyama, K., Kojima, S., Takahashi, H., Hayakawa, T.,Yamaya, T., 2003. Cell type distinct accumulations of mRNA and protein for NADH-dependent glutamate synthase in rice roots in response to the supply of NH4+. Plant Physiol. Bioch. 41, 643-647
|
Jamai, A., Salome, P.A., Schilling, S.H., Weber, A.P.,McClung, C.R., 2009. Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell 21, 595-606
|
Jiang, Y.L., Wang, X.P., Sun, H., Han, S.J., Li, W.F., Cui, N., Lin, G.M., Zhang, J.Y., Cheng, W., Cao, D.D., et al., 2018. Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc. Natl. Acad. Sci. USA. 115, 403-408
|
Jonassen, E.M., Sevin, D.C.,Lillo, C., 2009. The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. J. Plant Physiol. 166, 2071-2076
|
Kaufholdt, D., Baillie, C.-K., Meyer, M.H., Schwich, O.D., Timmerer, U.L., Tobias, L., van Thiel, D., Hansch, R.,Mendel, R.R., 2016. Identification of a protein-protein interaction network downstream of molybdenum cofactor biosynthesis in Arabidopsis thaliana. J. Plant Physiol. 207, 42-50
|
Kim, J.Y., Kwon, Y.J., Kim, S.I., Kim, D.Y., Song, J.T.,Seo, H.S., 2015. Ammonium inhibits chromomethylase 3-mediated methylation of the Arabidopsis nitrate reductase gene NIA2. Front. Plant Sci. 6, 1161
|
Konishi, M.,Yanagisawa, S., 2013. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat. Commun. 4, 1617
|
Konishi, N., Ishiyama, K., Beier, M.P., Inoue, E., Kanno, K., Yamaya, T., Takahashi, H.,Kojima, S., 2017. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. J. Exp. Bot. 68, 613-625
|
Konishi, N., Ishiyama, K., Matsuoka, K., Maru, I., Hayakawa, T., Yamaya, T.,Kojima, S., 2014. NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root. Physiol. Plant. 152, 138-151
|
Konishi, N., Saito, M., Imagawa, F., Kanno, K., Yamaya, T.,Kojima, S., 2018. Cytosolic glutamine synthetase isozymes play redundant roles in ammonium assimilation under low-ammonium conditions in roots of Arabidopsis thaliana. Plant Cell Physiol. 59, 601-613
|
Lambeck, I., Chi, J.C., Krizowski, S., Mueller, S., Mehlmer, N., Teige, M., Fischer, K.,Schwarz, G., 2010. Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase. Biochemistry 49, 8177-8186
|
Lambeck, I.C., Fischer-Schrader, K., Niks, D., Roeper, J., Chi, J.C., Hille, R.,Schwarz, G., 2012. Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase. J. Biol. Chem. 287, 4562-4571
|
Lee, H.M., Flores, E., Forchhammer, K., Herrero, A.,Tandeau de Marsac, N., 2000. Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-meidated regulation of nitrate and nitrite uptake in the cyanobacterium synechococcus sp. PCC 7942. Eur. J. Biochem. 267, 591-600
|
Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I.,Deng, X.W., 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731-749
|
Lee, S., Marmagne, A., Park, J., Fabien, C., Yim, Y., Kim, S.J., Kim, T.H., Lim, P.O., Masclaux-Daubresse, C.,Nam, H.G., 2020a. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J. 103, 7-20
|
Lee, S., Park, J., Lee, J., Shin, D., Marmagne, A., Lim, P.O., Masclaux-Daubresse, C., An, G.,Nam, H.G., 2020b. OsASN1 overexpression in rice increases grain protein content and yield under nitrogen-limiting conditions. Plant Cell Physiol. 61, 1309-1320
|
Li, H., Hu, B.,Chu, C., 2017. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J. Exp. Bot. 68, 2477-2488
|
Li, R.J., Hua, W.,Lu, Y.T., 2006. Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem. Biophys. Res. Commun. 342, 119-126
|
Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., et al., 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600
|
Lima, L., Seabra, A., Melo, P., Cullimore, J.,Carvalho, H., 2006. Phosphorylation and subsequent interaction with 14-3-3 proteins regulate plastid glutamine synthetase in Medicago truncatula. Planta 223, 558-567
|
Lothier, J., Gaufichon, L., Sormani, R., Lemaitre, T., Azzopardi, M., Morin, H., Chardon, F., Reisdorf-Cren, M., Avice, J.C.,Masclaux-Daubresse, C., 2011. The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. J. Exp. Bot. 62, 1375-1390
|
Marchi, L., Degola, F., Polverini, E., Terce-Laforgue, T., Dubois, F., Hirel, B.,Restivo, F.M., 2013. Glutamate dehydrogenase isoenzyme 3 (GHD3) of Arabidopsis thaliana is regulated by a combined effect of nitrogen and cytokinin. Plant Physiol. Biochem. 73, 368-374
|
Marchive, C., Roudier, F., Castaings, L., Brehaut, V., Blondet, E., Colot, V., Meyer, C.,Krapp, A., 2013. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 4, 1713
|
Martin, A., Lee, J., Kichey, T., Gerentes, D., Zivy, M., Tatout, C., Dubois, F., Balliau, T., Valot, B., Davanture, M., et al., 2006. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18, 3252-3274
|
Melo-Oliveira, R., Olivera, I.C.,Coruzzi, G.M., 1996. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc. Natl. Acad. Sci. USA. 93, 4718-4723
|
Melo, P.M., Silva, L.S., Ribeiro, I., Seabra, A.R.,Carvalho, H.G., 2011. Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration. Plant Physiol. 157, 1505-1517
|
Miyashita, Y.,Good, A.G., 2008. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J. Exp. Bot. 59, 667-680
|
Moison, M., Marmagne, A., Dinant, S., Soulay, F., Azzopardi, M., Lothier, J., Citerne, S., Morin, H., Legay, N., Chardon, F., et al., 2018. Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis. J. Exp. Bot. 69, 4379-4393
|
Molla-Morales, A., Sarmiento-Manus, R., Robles, P., Quesada, V., Perez-Perez, J.M., Gonzalez-Bayon, R., Hannah, M.A., Willmitzer, L., Ponce, M.R.,Micol, J.L., 2011. Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. Plant J. 65, 335-345
|
Ohashi, M., Ishiyama, K., Kojima, S., Konishi, N., Nakano, K., Kanno, K., Hayakawa, T.,Yamaya, T., 2015. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant Cell Physiol. 56, 769-778
|
Palatnik, J.F., Carrillo, N.,Valle, E.M., 1999. The role of photosynthetic electron transport in the oxidative degradation of chloroplastic glutamine synthetase. Plant Physiol. 121, 471-478
|
Park, B.S., Song, J.T.,Seo, H.S., 2011. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat. Commun. 2, 400
|
Polge, C., Jossier, M., Crozet, P., Gissot, L.,Thomas, M., 2008. β-subunits of the SnRK1 complexes share a common ancestral function together with expression and function specificities; physical interaction with nitrate reductase specifically occurs via AKINβ1-subunit. Plant Physiol. 148, 1570-1582
|
Potel, F., Valadier, M.H., Ferrario-Mery, S., Grandjean, O., Morin, H., Gaufichon, L., Boutet-Mercey, S., Lothier, J., Rothstein, S.J., Hirose, N., et al., 2009. Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana--roles of glutamate synthases and carbamoylphosphate synthetase in leaves. FEBS J. 276, 4061-4076
|
Prinsi, B.,Espen, L., 2015. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. BMC Plant Biol. 15, 96
|
Raffan, S., Sparks, C., Huttly, A., Hyde, L., Martignago, D., Mead, A., Hanley, S.J., Wilkinson, P.A., Barker, G., Edwards, K.J., et al., 2021. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol. J. 19, 1602-1613
|
Rastogi, R., Chourey, P.S.,Muhitch, M.J., 1998. The maize glutamine synthetase GS1-2 gene is preferentially expressed in kernel pedicels and is developmentally-regulated. Plant Cell Physiol. 39, 443-446
|
Raun, W.R.,Johnson, G.V., 1999. Improving nitrogen use efficiency for cereal production. Agron. J. 91, 357-363
|
Redinbaugh, M.G.,Campbell, W.H., 1993. Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (zea mays) root primary resopnse to nitrate (evidence for an organ-specific response). Plant Physiol. 101, 1249-1255
|
Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W.,Baginsky, S., 2009. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 150, 889-903
|
Silva, L.S., Alves, M.Q., Seabra, A.R.,Carvalho, H.G., 2019. Characterization of plant glutamine synthetase S-nitrosation. Nitric Oxide 88, 73-86
|
Sun, L., Wang, Y., Liu, L.L., Wang, C., Gan, T., Zhang, Z., Wang, Y., Wang, D., Niu, M., Long, W., et al., 2017. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Sci. Rep. 7, 41846
|
Tabuchi, M., Sugiyama, K., Ishiyama, K., Inoue, E., Sato, T., Takahashi, H.,Yamaya, T., 2005. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J. 42, 641-651
|
Taira, M., Valtersson, U., Burkhardt, B.,Ludwig, R.A., 2004. Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16, 2048-2058
|
Tamura, W., Hidaka, Y., Tabuchi, M., Kojima, S., Hayakawa, T., Sato, T., Obara, M., Kojima, M., Sakakibara, H.,Yamaya, T., 2010. Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids 39, 1003-1012
|
Tamura, W., Kojima, S., Toyokawa, A., Watanabe, H., Tabuchi-Kobayashi, M., Hayakawa, T.,Yamaya, T., 2011. Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front. Plant Sci. 2, 57
|
Thomsen, H.C., Eriksson, D., Moeller, I.S.,Schjoerring, J.K., 2014. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci. 19, 656-663
|
Tokizawa, M., Enomoto, T., Ito, H., Wu, L., Kobayashi, Y., Mora-Macias, J., Armenta-Medina, D., Iuchi, S., Kobayashi, M., Nomoto, M., et al., 2021. High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes GDH1 and GDH2 in Arabidopsis. J. Exp. Bot. 72, 2769-2789
|
Tsai, K.J., Lin, C.Y., Ting, C.Y.,Shih, M.C., 2016. Ethylene-regulated glutamate dehydrogenase fine-tunes metabolism during anoxia-reoxygenation. Plant Physiol. 172, 1548-1562
|
Wang, P., Du, Y., Li, Y., Ren, D.,Song, C.P., 2010. Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22, 2981-2998
|
Wang, Q., Nian, J., Xie, X., Yu, H., Zhang, J., Bai, J., Dong, G., Hu, J., Bai, B., Chen, L., et al., 2018. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat. Commun. 9, 735
|
Wang, Q., Su, Q., Nian, J., Zhang, J., Guo, M., Dong, G., Hu, J., Wang, R., Wei, C., Li, G., et al., 2021a. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Mol. Plant 14, 1012-1023
|
Wei, Y., Wang, X., Zhang, Z., Xiong, S., Meng, X., Zhang, J., Wang, L., Zhang, X., Yu, M.,Ma, X., 2020. Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat (Triticum aestivum L.). Int. J. Mol. Sci. 21, 6299
|
Wei, Y., Xiong, S., Zhang, Z., Meng, X., Wang, L., Zhang, X., Yu, M., Yu, H., Wang, X.,Ma, X., 2021. Localization, gene expression, and functions of glutamine synthetase isozymes in wheat grain (Triticum aestivum L.). Front. Plant Sci. 12, 580405
|
Wilkinson, J.Q.,Crawford, N.M., 1993. Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol. Gen. Genet. 239, 289-297
|
Wong, H.-K., Chan, H.-K., Coruzzi, G.M.,Lam, H.-M., 2004. Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiol. 134, 332-338
|
Wu, J., Zhang, Z.S., Xia, J.Q., Alfatih, A., Song, Y., Huang, Y.J., Wan, G.Y., Sun, L.Q., Tang, H., Liu, Y., et al., 2021. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol. J. 19, 448-461
|
Xiong, Y., Ren, Y., Li, W., Wu, F., Yang, W., Huang, X.,Yao, J., 2019. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. J. Exp. Bot. 70, 3765-3780
|
Yamaya, T.,Kusano, M., 2014. Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice. J. Exp. Bot. 65, 5519-5525
|
Yamaya, T., Obara, M., Nakajima, H., Sasaki, S., Hayakawa, T.,Sato, T., 2002. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Exp. Bot. 53, 917-925
|
Yaneva, I.A., Hoffmann, G.W.,Tischner, R., 2002. Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiol. Plant. 114, 65-72
|
Yang, J., Wang, M., Li, W., He, X., Teng, W., Ma, W., Zhao, X., Hu, M., Li, H., Zhang, Y., et al., 2019. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J. 17, 1823-1833
|
Yang, X., Nian, J., Xie, Q., Feng, J., Zhang, F., Jing, H., Zhang, J., Dong, G., Liang, Y., Peng, J., et al., 2016. Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol. Plant 9, 1520-1534
|
Yu, J., Xuan, W., Tian, Y., Fan, L., Sun, J., Tang, W., Chen, G., Wang, B., Liu, Y., Wu, W., et al., 2021. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol. J. 19, 167-176
|
Zeng, D.D., Qin, R., Li, M., Alamin, M., Jin, X.L., Liu, Y.,Shi, C.H., 2017. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol. Genet. Genomics 292, 385-395
|
Zhang, J., Zhang, H., Li, S., Li, J., Yan, L.,Xia, L., 2021a. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J. Integr. Plant Biol. 63, 1649-1663
|
Zhang, S., Zhang, Y., Li, K., Yan, M., Zhang, J., Yu, M., Tang, S., Wang, L., Qu, H., Luo, L., et al., 2021b. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice. Curr. Biol. 31, 671-683
|
Zhang, W., Fan, X., Gao, Y., Liu, L., Sun, L., Su, Q., Han, J., Zhang, N., Cui, F., Ji, J., et al., 2017. Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat. Sci. Rep. 7, 44677
|