5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 6
Jun.  2022
Turn off MathJax
Article Contents

Zebrafish Foxc1a controls ventricular chamber maturation by directly regulating wwtr1 and nkx2.5 expression

doi: 10.1016/j.jgg.2021.12.002
Funds:

This work was supported by the National Natural Science Foundation of China (31970769 and 31671518). We thank Dr. Jingwei Xiong from Peking University for providing us with the transgenic zebrafish line Tg(myl7:eGFP). We thank Dr. Dong Liu from Zebrafish Center at Nantong University Jiangsu Key Laboratory of Neuroregeneration for providing the transgenic zebrafish lines Tg(myl7:nDsRed) and Tg(kdrl:ras-mCherry). We thank members of Xin Lou Lab at Nanjing University for the help during this project. We thank Dr. Xiaohua Dong from the Department of Pediatric, Jingjiang Peopleʼs Hospital Affiliated to Yangzhou University for constructive discussions of this project. The authors would also like to express their gratitude to AJE (https://www.aje.cn/) for the expert linguistic services provided.

  • Received Date: 2021-07-06
  • Accepted Date: 2021-12-06
  • Rev Recd Date: 2021-12-06
  • Publish Date: 2022-06-30
  • Chamber maturation is a significant process in cardiac development. Disorders of this crucial process lead to a range of congenital heart defects. Foxc1a is a critical transcription factor reported to regulate the specification of cardiac progenitor cells. However, little is known about the role of Foxc1a in modulating chamber maturation. Previously, we reported that foxc1a-null zebrafish embryos exhibit disrupted heart structures and functions. In this study, we observe that ventricle structure and cardiomyocyte proliferation are abolished during chamber maturation in foxc1a-null zebrafish embryos. To observe the endogenous localization of Foxc1a in the hearts of living embryos, we insert eyfp at the foxc1a genomic locus using TALEN. Analysis of the knockin zebrafish show that foxc1a is widely expressed in ventricular cardiomyocytes during chamber development. Cardiac RNA sequencing analysis reveals the downregulated expression of the Hippo signaling effector wwtr1. Dual-luciferase and chromatin immunoprecipitation assays reveal that Foxc1a can bind directly to three sites in the wwtr1 promoter region. Furthermore, wwtr1 mRNA overexpression is sufficient to reverse the ventricle defects during chamber maturation. Conditional overexpression of nkx2.5 also partially rescues the ventricular defects during chamber development. These findings demonstrate that wwtr1 and nkx2.5 are direct targets of Foxc1a during ventricular chamber maturation.
  • loading
  • Albadri, S., De Santis, F., Di Donato, V.,Del Bene, F. 2017. CRISPR/Cas9-mediated knockin and knockout in zebrafish, in:Jaenisch, R., Zhang, F., Gage, F.(Eds.), Genome editing in neurosciences. Springer Copyright 2017, The Author (s). Cham (CH), pp. 41-49
    Banerjee, S., Hayer, K., Hogenesch, J.B.,Granato, M., 2015. Zebrafish foxc1a drives appendage-specific neural circuit development. Development 142, 753-762
    Bedell, V.M., Wang, Y., Campbell, J.M., Poshusta, T.L., Starker, C.G., Krug, R.G., 2nd, Tan, W., Penheiter, S.G., Ma, A.C., Leung, A.Y., et al., 2012. In vivo genome editing using a high-efficiency talen system. Nature 491, 114-118
    Berberoglu, M.A., Dong, Z., Li, G., Zheng, J., Trejo Martinez Ldel, C., Peng, J., Wagle, M., Reichholf, B., Petritsch, C., Li, H., et al., 2014. Heterogeneously expressed fezf2 patterns gradient Notch activity in balancing the quiescence, proliferation, and differentiation of adult neural stem cells. J. Neurosci. 34, 13911-13923
    Bi, L., Okabe, I., Bernard, D.J.,Nussbaum, R.L., 2002. Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm. Genome. 13, 169-172
    Capela de Matos, R.R., Othman, M.A.K., Ferreira, G.M., Costa, E.S., Melo, J.B., Carreira, I.M., de Souza, M.T., Lopes, B.A., Emerenciano, M., Land, M.G.P., et al., 2018. Molecular approaches identify a cryptic mecom rearrangement in a child with a rapidly progressive myeloid neoplasm. Cancer Genet. 221, 25-30
    Carney, T.J.,Mosimann, C., 2018. Switch and trace:Recombinase genetics in zebrafish. Trends Genet. 34, 362-378
    Colombo, S., de Sena-Tomas, C., George, V., Werdich, A.A., Kapur, S., MacRae, C.A.,Targoff, K.L., 2018. Nkx genes establish second heart field cardiomyocyte progenitors at the arterial pole and pattern the venous pole through Isl1 repression. Development 145
    Du, R.F., Huang, H., Fan, L.L., Li, X.P., Xia, K.,Xiang, R., 2016. A novel mutation of FOXC1(r127l) in an axenfeld-rieger syndrome family with glaucoma and multiple congenital heart diseases. Ophthalmic Genet. 37, 111-115
    Ellesoe, S.G., Johansen, M.M., Bjerre, J.V., Hjortdal, V.E., Brunak, S.,Larsen, L.A., 2016. Familial atrial septal defect and sudden cardiac death:Identification of a novel NKX2-5 mutation and a review of the literature. Congenit. Heart Dis. 11, 283-290
    Foo, Y.Y., Motakis, E., Tiang, Z., Shen, S., Lai, J.K.H., Chan, W.X., Wiputra, H., Chen, N., Chen, C.K., Winkler, C., et al., 2021. Effects of extended pharmacological disruption of zebrafish embryonic heart biomechanical environment on cardiac function, morphology, and gene expression. Dev. Dyn. 250, 1759-1777
    Gripp, K.W., Hopkins, E., Jenny, K., Thacker, D.,Salvin, J., 2013. Cardiac anomalies in axenfeld-rieger syndrome due to a novel FOXC1 mutation. Am. J. Med. Genet. A. 161A, 114-119
    Guner-Ataman, B., Gonzalez-Rosa, J.M., Shah, H.N., Butty, V.L., Jeffrey, S., Abrial, M., Boyer, L.A., Burns, C.G.,Burns, C.E., 2018. Failed progenitor specification underlies the cardiopharyngeal phenotypes in a zebrafish model of 22q11.2 deletion syndrome. Cell Rep. 24, 1342-1354. e5
    Gut, P., Reischauer, S., Stainier, D.Y.R.,Arnaout, R., 2017. Little fish, big data:Zebrafish as a model for cardiovascular and metabolic disease. Physiol. Rev. 97, 889-938
    Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R.L.,Martin, J.F., 2011. Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458-461
    Icardo, J.M.,Fernandez-Teran, A., 1987. Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat. 130, 264-274
    Jie, Y., Qi-Yong, L., Zhu-Liang, H., Zu-Hua, L.I.,Fang, Z., 2015. A new simple but effective method of collecting and purifying hearts from zebrafish embryos. Progress in Modern Biomedicine.15, 3633-3636
    Kume, T., 2009. The cooperative roles of Foxc1 and Foxc2 in cardiovascular development. Adv. Exp. Med. Biol. 665, 63-77
    Lai, J.K.H., Collins, M.M., Uribe, V., Jimenez-Amilburu, V., Gunther, S., Maischein, H.M.,Stainier, D.Y.R., 2018. The Hippo pathway Effector Wwtr1 regulates cardiac wall maturation in zebrafish. Development 145
    Lee, K.F., Simon, H., Chen, H., Bates, B., Hung, M.C.,Hauser, C., 1995. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394-398
    Li, J., Yue, Y., Dong, X., Jia, W., Li, K., Liang, D., Dong, Z., Wang, X., Nan, X., Zhang, Q., et al., 2015a. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly. J. Biol. Chem. 290, 10216-10228
    Li, J., Zhang, B.B., Ren, Y.G., Gu, S.Y., Xiang, Y.H.,Du, J.L., 2015b. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the crispr/cas9 system. Cell Res. 25, 634-637
    Lin, Z., Zhou, P., von Gise, A., Gu, F., Ma, Q., Chen, J., Guo, H., van Gorp, P.R., Wang, D.Z.,Pu, W.T., 2015. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ. Res. 116, 35-45
    Liu, J., Bressan, M., Hassel, D., Huisken, J., Staudt, D., Kikuchi, K., Poss, K.D., Mikawa, T.,Stainier, D.Y., 2010. A dual role for ErbB2 signaling in cardiac trabeculation. Development 137, 3867-3875
    Lyons, I., Parsons, L.M., Hartley, L., Li, R., Andrews, J.E., Robb, L.,Harvey, R.P., 1995. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes. Dev. 9, 1654-1666
    MacGrogan, D., Munch, J.,de la Pompa, J.L., 2018. Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat. Rev. Cardiol. 15, 685-704
    Olson, E.N., 2006. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922-1927
    Sakata, H.,Maeno, M., 2014. Nkx2.5 is involved in myeloid cell differentiation at anterior ventral blood islands in the Xenopus embryo. Dev. Growth Differ. 56, 544-554
    Samsa, L.A., Yang, B.,Liu, J., 2013. Embryonic cardiac chamber maturation:Trabeculation, conduction, and cardiomyocyte proliferation. Am. J. Med. Genet. C. Semi. Med. Genet. 163c, 157-168
    Sanchez-Castro, M., Eldjouzi, H., Charpentier, E., Busson, P.F., Hauet, Q., Lindenbaum, P., Delasalle-Guyomarch, B., Baudry, A., Pichon, O., Pascal, C., et al., 2016. Search for rare copy-number variants in congenital heart defects identifies novel candidate genes and a potential role for FOXC1 in patients with coarctation of the aorta. Circ. Cardiovasc. Genet. 9, 86-94
    Sarmah, S., Barrallo-Gimeno, A., Melville, D.B., Topczewski, J., Solnica-Krezel, L.,Knapik, E.W., 2010. Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLoS One 5, e10367
    Sedmera, D., Pexieder, T., Vuillemin, M., Thompson, R.P.,Anderson, R.H., 2000. Developmental patterning of the myocardium. Anat. Rec. 258, 319-337
    Seo, S.,Kume, T., 2006. Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev. Biol. 296, 421-436
    Smith, R.S., Zabaleta, A., Kume, T., Savinova, O.V., Kidson, S.H., Martin, J.E., Nishimura, D.Y., Alward, W.L., Hogan, B.L.,John, S.W., 2000. Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum. Mol. Genet. 9, 1021-1032
    Song, Z., Jadali, A., Fritzsch, B.,Kwan, K.Y., 2017. Neurog1 regulates CDK2 to promote proliferation in otic progenitors. Stem Cell Reports 9, 1516-1529
    Tang, Y., Shi, G., Yang, J., Zheng, W., Tang, J., Chen, X.Z., Yang, J.,Wang, Z., 2019. Role of PKR in the inhibition of proliferation and translation by polycystin-1. Biomed. Res. Int. 2019, 5320747
    Terada, R., Warren, S., Lu, J.T., Chien, K.R., Wessels, A.,Kasahara, H., 2011. Ablation of Nkx2-5 at mid-embryonic stage results in premature lethality and cardiac malformation. Cardiovasc. Res. 91, 289-299
    Topczewska, J.M., Topczewski, J., Solnica-Krezel, L.,Hogan, B.L., 2001. Sequence and expression of zebrafish foxc1a and foxc1b, encoding conserved forkhead/winged helix transcription factors. Mech. Dev. 100, 343-347
    Tu, C.T., Yang, T.C.,Tsai, H.J., 2009. Nkx2.7 and Nkx2.5 function redundantly and are required for cardiac morphogenesis of zebrafish embryos. PLoS One 4, e4249
    Whitesell, T.R., Chrystal, P.W., Ryu, J.R., Munsie, N., Grosse, A., French, C.R., Workentine, M.L., Li, R., Zhu, L.J., Waskiewicz, A., et al., 2019. Foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish. Dev. Biol. 453, 34-47
    Xiao, Y., Hill, M.C., Zhang, M., Martin, T.J., Morikawa, Y., Wang, S., Moise, A.R., Wythe, J.D.,Martin, J.F., 2018. Hippo signaling plays an essential role in cell state transitions during cardiac fibroblast development. Dev. Cell 45, 153-169 e156
    Xie, J., Wang, Y., Ai, D., Yao, L.,Jiang, H., 2021. The role of the Hippo pathway in heart disease. FEBS J
    Xu, P., Balczerski, B., Ciozda, A., Louie, K., Oralova, V., Huysseune, A.,Crump, J.G., 2018. Fox proteins are modular competency factors for facial cartilage and tooth specification. Development 145
    Yue, Y., Jiang, M., He, L., Zhang, Z., Zhang, Q., Gu, C., Liu, M., Li, N.,Zhao, Q., 2018. The transcription factor foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells. J. Biol. Chem. 293, 638-650
    Zhang, S.P., Yang, R.H., Shang, J., Gao, T., Wang, R., Peng, X.D., Miao, X., Pan, L.,Yuan, W.J., 2019. FOXC1 up-regulates the expression of toll-like receptors in myocardial ischaemia. J. Cell. Mol. Med. 23, 7566-7580
    Zhang, Y., Ho, K., Keaton, J.M., Hartzel, D.N., Day, F., Justice, A.E., Josyula, N.S., Pendergrass, S.A., Actkins, K., Davis, L.K., et al., 2020. A genome-wide association study of polycystic ovary syndrome identified from electronic health records. Am. J. Obstet. Gynecol. 223, 559 e551-559 e521
    Zhao, L., Ben-Yair, R., Burns, C.E.,Burns, C.G., 2019. Endocardial Notch signaling promotes cardiomyocyte proliferation in the regenerating zebrafish heart through Wnt pathway antagonism. Cell Rep. 26, 546-554 e545
    Zhao, L., Borikova, A.L., Ben-Yair, R., Guner-Ataman, B., MacRae, C.A., Lee, R.T., Burns, C.G.,Burns, C.E., 2014. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl. Acad. Sci. U. S. A. 111, 1403-1408
    Zhao, Q., Dobbs-McAuliffe, B.,Linney, E., 2005. Expression of cyp26b1 during zebrafish early development. Gene Expr. Patterns 5, 363-369
    Zhou, Q., Li, L., Zhao, B.,Guan, K.L., 2015. The hippo pathway in heart development, regeneration, and diseases. Circ. Res. 116, 1431-1447
    Zhu, H., 2016. Forkhead box transcription factors in embryonic heart development and congenital heart disease. Life Sci. 144, 194-201
    Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., et al., 2013. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat. Methods 10, 329-331
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (421) PDF downloads (142) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return