Arbab, M., Shen, M.W., Mok, B., Wilson, C., Matuszek, Z., Cassa, C.A.,Liu, D.R., 2020. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463-480. e430
|
Chen, L.W., Park, J.E., Paa, P., Rajakumar, P.D., Prekop, H.T., Chew, Y.T., Manivannan, S.N.,Chew, W.L., 2021. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 12, 1384
|
Chuai, G., Ma, H., Yan, J., Chen, M., Hong, N., Xue, D., Zhou, C., Zhu, C., Chen, K., Duan, B., et l., 2018. DeepCRISPR:optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80
|
Cuperus, J.T., Groves, B., Kuchina, A., Rosenberg, A.B., Jojic, N., Fields, S.,Seelig, G., 2017. Deep learning of the regulatory grammar of yeast 5' untranslated regions from 500,000 random sequences. Genome Res. 27, 2015-2024
|
Fernoaga, V., Sandu, V.,Balan, T., 2020. Artificial intelligence for the prediction of exhaust back pressure effect on the performance of diesel engines. Appli. Sci. 10,7370
|
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I.,Liu, D.R., 2017. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471
|
Hui, K.K., Kim, Y., Lee, S., Min, S., Bae, J.Y., Choi, J.W., Park, J., Jung, D., Yoon, S., Kim, H.H. 2019. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Sci. Adv. 5, eaax9249
|
Jensen, K.T., Floe, L., Petersen, T.S., Huang, J., Xu, F., Bolund, L., Luo, Y.,Lin, L., 2017. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett. 591, 1892-1901
|
Joung, J., Konermann, S., Gootenberg, J.S., Abudayyeh, O.O., Platt, R.J., Brigham, M.D., Sanjana, N.E.,Zhang, F., 2017. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828-863
|
Kim, H.K., Min, S., Song, M., Jung, S., Choi, J.W., Kim, Y., Lee, S., Yoon, S.,Kim, H.H., 2018. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239-241
|
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A.,Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424
|
Kurt, I.C., Zhou, R., Iyer, S., Garcia, S.P., Miller, B.R., Langner, L.M., Grunewald, J.,Joung, J.K., 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41-46
|
Li, W., Singh, P.K., Sowd, G.A., Bedwell, G.J., Jang, S., Achuthan, V., Oleru, A.V., Wong, D., Fadel, H.J., Lee, K.E., et l., 2020. CPSF6-dependent targeting of speckle-associated domains distinguishes primate from nonprimate lentiviral integration. mBio. 11, e02254-20
|
Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K.Y., et l., 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729
|
Sanjana, N.E., Shalem, O.,Zhang, F., 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods. 11, 783-784
|
Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Ebert, B.L., Root, D.E.,Doench, J.G., Zhang, F., 2014. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science 343, 84-87
|
Smibi, M.J.,Menon, V., 2019. Modeling compensation of data science professionals in BRIC nations, in:Abraham, A., Dutta, P., Mandal, J.K., Bhattacharya, A., Dutta, S., (Eds.), Emerging Technologies in Data Mining and Information Security emerging technologies in data mining and information security. Springer Singapore., Singapore, pp. 631-638
|
Song, M., Kim, H.K., Lee, S., Kim, Y., Seo, S.Y., Park, J., Choi, J.W., Jang, H., Shin, J.H., Min, S., et l., 2020. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat. Biotechnol. 38, 1037-1043
|
Zhao, D.D., Li, J., Li, S.W., Xin, X.Q., Hu, M., Price, M.A., Rosser, S.J., Bi, C.H., Zhang, X.L., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35-40
|