Bheda, P. 2020. Metabolic transcriptional memory. Mol. Metab. 38, 100955
|
Bheda, P., Kirmizis, A., Schneider, R. 2020. The past determines the future:sugar source history and transcriptional memory. Curr. Genet. 66, 1029-1035
|
Brickner, D. G., Cajigas, I., Fondufe-Mittendorf, Y., Ahmed, S., Lee, P. C., Widom, J., Brickner, J. H. 2007. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81
|
Carlsson, P., Mahlapuu, M. 2002. Forkhead transcription factors:key players in development and metabolism. Dev. Biol. 250, 1-23
|
Cerulus, B., Jariani, A., Perez-Samper, G., Vermeersch, L., Pietsch, J. M., Crane, M. M., New, A. M., Gallone, B., Roncoroni, M., Dzialo, M. C., Govers, S. K., Hendrickx, J. O., Galle, E., Coomans, M., Berden, P., Verbandt, S., Swain, P. S., Verstrepen, K. J. 2018. Transition between fermentation and respiration determines history-dependent behavior in fluctuating carbon sources. Elife 7, e39234
|
D'Urso, A., Brickner, J. H. 2017. Epigenetic transcriptional memory. Curr. Genet. 63, 435-439
|
Erkina, T. Y., Tschetter, P. A., Erkine, A. M. 2008. Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes. Mol. Cell Biol. 28, 1207-1217
|
He, C., Klionsky, D. J. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93
|
Kuang, Z., Pinglay, S., Ji, H., Boeke, J. D. 2017. Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth. Elife 6
|
Kundu, S., Horn, P. J., Peterson, C. L. 2007. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev. 21, 997-1004
|
Kundu, S., Peterson, C. L. 2010. Dominant role for signal transduction in the transcriptional memory of yeast GAL genes. Mol. Cell Biol. 30, 2330-2340
|
Lamke, J., Brzezinka, K., Altmann, S., Baurle, I. 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J. 35, 162-175
|
Liu, H. C., Lamke, J., Lin, S. Y., Hung, M. J., Liu, K. M., Charng, Y. Y., Baurle, I. 2018. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J. 95, 401-413
|
New, A. M., Cerulus, B., Govers, S. K., Perez-Samper, G., Zhu, B., Boogmans, S., Xavier, J. B., Verstrepen, K. J. 2014. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol. 12, e1001764
|
Rodriguez, A., De La Cera, T., Herrero, P., Moreno, F. 2001. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem. J. 355, 625-631
|
Sood, V., Cajigas, I., D'Urso, A., Light, W. H., Brickner, J. H. 2017. Epigenetic transcriptional memory of GAL genes depends on growth in glucose and the Tup1 transcription factor in Saccharomyces cerevisiae. Genetics 206, 1895-1907
|
Vihervaara, A., Mahat, D. B., Himanen, S. V., Blom, M. A. H., Lis, J. T., Sistonen, L. 2021. Stress-induced transcriptional memory accelerates promoter-proximal pause release and decelerates termination over mitotic divisions. Mol. Cell. 81, 1715-1731 e1716
|
Vlahakis, A., Lopez Muniozguren, N., Powers, T. 2017. Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy. Autophagy 13, 1804-1812
|
Zhao, Z., Zhang, Z., Li, J., Dong, Q., Xiong, J., Li, Y., Lan, M., Li, G., Zhu, B. 2020. Sustained TNF-alpha stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. Elife 9
|
Zheng, L., Shu, W. J., Li, Y. M., Mari, M., Yan, C., Wang, D., Yin, Z. H., Jiang, W., Zhou, Y., Okamoto, K., Reggiori, F., Klionsky, D. J., Song, Z., Du, H. N. 2020. The Paf1 complex transcriptionally regulates the mitochondrial-anchored protein Atg32 leading to activation of mitophagy. Autophagy 16, 1366-1379
|