5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 4
Apr.  2022
Turn off MathJax
Article Contents

Functionalized gadofullerene ameliorates impaired glycolipid metabolism in type 2 diabetic mice

doi: 10.1016/j.jgg.2021.09.004
Funds:

This work was supported by the National Natural Science Foundation of China (31871163, 81471000)

the Ministry of Science and Technology of China (2014DFA32120).

  • Received Date: 2021-06-17
  • Accepted Date: 2021-09-01
  • Rev Recd Date: 2021-09-01
  • Publish Date: 2022-04-30
  • The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese mouse model of type 2 diabete mellitus (MKR) mouse type 2 diabetes mellitus (T2DM) models. In both mouse models, the diabetic phenotypes, including hyperglycemia, impaired glucose tolerance, and insulin sensitivity, were ameliorated after two or four weeks of intraperitoneal administration of GF. GF lowered blood glucose levels in a dose-dependent manner. Importantly, the restored blood glucose levels could persist ten days after withdrawal of GF treatment. The hepatic AKT/GSK3β/FoxO1 pathway is shown to be the main target of GF for rebalancing gluconeogenesis and glycogen synthesis in vivo and in vitro. Furthermore, GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway. Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.
  • loading
  • Agouni, A., Tual-Chalot, S., Chalopin, M., Duluc, L., Mody, N., Martinez, M.C., Andriantsitohaina, R.,Delibegovic, M., 2014. Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction. Biochem Pharmacol 92, 607-617
    Akhtar, M.J., Ahamed, M., Alhadlaq, H.A.,Alshamsan, A., 2017. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 1861, 802-813
    P, B., 2007. The lean patient with type 2 diabetes: characteristics and therapy challenge. Int J Clin Pract Suppl, 3-9
    Burkewitz, K., Zhang, Y.,Mair, W.B., 2014. AMPK at the nexus of energetics and aging. Cell Metab 20, 10-25
    Calnan, D.R.,Brunet, A., 2008. The FoxO code. Oncogene 27, 2276-2288
    Chatterjee, S., Khunti, K.,Davies, M.J., 2017. Type 2 diabetes. Lancet 389, 2239-2251
    Defronzo, R.A., 2009. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773-795
    Del Prato, S.,Pulizzi, N., 2006. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 55, S20-27
    Dornhorst, A., 2001. Insulinotropic meglitinide analogues. Lancet 358, 1709-1716
    Dowarah, J.,Singh, V.P., 2020. Anti-diabetic drugs recent approaches and advancements. Bioorg Med Chem 28, 115263
    Fernandez, A.M., Kim, J.K., Yakar, S., Dupont, J., Hernandez-Sanchez, C., Castle, A.L., Filmore, J., Shulman, G.I.,Le Roith, D., 2001. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15, 1926-1934
    Ferrannini, E.,DeFronzo, R.A., 2015. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J 36, 2288-2296
    Foretz, M., Guigas, B., Bertrand, L., Pollak, M.,Viollet, B., 2014. Metformin: from mechanisms of action to therapies. Cell Metab 20, 953-966
    Gai, X., Tang, B., Liu, F., Wu, Y., Wang, F., Jing, Y., Huang, F., Jin, D., Wang, L.,Zhang, H., 2019. mTOR/miR-145-regulated exosomal GOLM1 promotes hepatocellular carcinoma through augmented GSK-3beta/MMPs. J Genet Genomics 46, 235-245
    Ghani, U., 2015. Re-exploring promising alpha-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur J Med Chem 103, 133-162
    Guo, S., 2014. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 220, T1-T23
    Hardie, D.G., 2014. AMPK--sensing energy while talking to other signaling pathways. Cell Metab 20, 939-952
    Houseman, L., Edwards, M., Phillips, I.R.,Shephard, E.A., 2015. Isolation and Culture of Mouse Hepatocytes: Gender-Specific Gene Expression Responses to Chemical Treatments. Methods Mol Biol 1250, 3-12
    I, O.S., Zhang, W., Wasserman, D.H., Liew, C.W., Liu, J., Paik, J., DePinho, R.A., Stolz, D.B., Kahn, C.R., Schwartz, M.W., et al., 2015. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat Commun 6, 7079
    Kandimalla, R., Thirumala, V.,Reddy, P.H., 2017. Is Alzheimer's disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 1863, 1078-1089
    Kim, C.H., Pennisi, P., Zhao, H., Yakar, S., Kaufman, J.B., Iganaki, K., Shiloach, J., Scherer, P.E., Quon, M.J.,LeRoith, D., 2006. MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. Am J Physiol Endocrinol Metab 291, E298-305
    Kobzar, O.L., Trush, V.V., Tanchuk, V.Y., Zhilenkov, A.V., Troshin, P.A.,Vovk, A.I., 2014. Fullerene derivatives as a new class of inhibitors of protein tyrosine phosphatases. Bioorg Med Chem Lett 24, 3175-3179
    Lamos, E.L., Stein, S.A.,Davis, S.N., 2013. Sulfonylureas and meglitinides: historical and contemporary issues. Panminerva Med 55, 239-251
    Li, X., Zhen, M., Deng, R., Yu, T., Li, J., Zhang, Y., Zou, T., Zhou, Y., Lu, Z., Guan, M., et al., 2018. RF-assisted gadofullerene nanoparticles induces rapid tumor vascular disruption by down-expression of tumor vascular endothelial cadherin. Biomaterials 163, 142-153
    Li, X., Zhen, M., Zhou, C., Deng, R., Yu, T., Wu, Y., Shu, C., Wang, C.,Bai, C., 2019. Gadofullerene Nanoparticles Reverse Dysfunctions of Pancreas and Improve Hepatic Insulin Resistance for Type 2 Diabetes Mellitus Treatment. ACS Nano 13, 8597-8608
    Liu, Q., Zhang, X., Zhang, X., Zhang, G., Zheng, J., Guan, M., Fang, X., Wang, C.,Shu, C., 2013. C70-carboxyfullerenes as efficient antioxidants to protect cells against oxidative-induced stress. ACS Appl Mater Interfaces 5, 11101-11107
    Ma, H., Zhao, J., Meng, H., Hu, D., Zhou, Y., Zhang, X., Wang, C., Li, J., Yuan, J.,Wei, Y., 2020. Carnosine-Modified Fullerene as a Highly Enhanced ROS Scavenger for Mitigating Acute Oxidative Stress. ACS Appl Mater Interfaces 12, 16104-16113
    Meng, J., Liang, X., Chen, X.,Zhao, Y., 2013. Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr Biol (Camb) 5, 43-47
    Nespoux, J.,Vallon, V., 2018. SGLT2 inhibition and kidney protection. Clin Sci (Lond) 132, 1329-1339
    Petersen, M.C., Vatner, D.F.,Shulman, G.I., 2017. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13, 572-587
    Petrovic, D., Seke, M., Borovic, M.L., Jovic, D., Borisev, I., Srdjenovic, B., Rakocevic, Z., Pavlovic, V.,Djordjevic, A., 2018. Hepatoprotective effect of fullerenol/doxorubicin nanocomposite in acute treatment of healthy rats. Exp Mol Pathol 104, 199-211
    Pfeiffer, A.F.,Klein, H.H., 2014. The treatment of type 2 diabetes. Dtsch Arztebl Int 111, 69-81; quiz 82
    Qian, M., Shan, Y., Guan, S., Zhang, H., Wang, S.,Han, W., 2016. Structural Basis of Fullerene Derivatives as Novel Potent Inhibitors of Protein Tyrosine Phosphatase 1B: Insight into the Inhibitory Mechanism through Molecular Modeling Studies. J Chem Inf Model 56, 2024-2034
    Remedi, M.S.,Emfinger, C., 2016. Pancreatic beta-cell identity in diabetes. Diabetes Obes Metab 18 Suppl 1, 110-116
    Rui, L., 2014. Energy metabolism in the liver. Compr Physiol 4, 177-197
    Samuel, V.T.,Shulman, G.I., 2012. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852-871
    Sanchez-Rangel, E.,Inzucchi, S.E., 2017. Metformin: clinical use in type 2 diabetes. Diabetologia 60, 1586-1593
    Sharabi, K., Lin, H., Tavares, C.D.J., Dominy, J.E., Camporez, J.P., Perry, R.J., Schilling, R., Rines, A.K., Lee, J., Hickey, M., et al., 2017. Selective Chemical Inhibition of PGC-1alpha Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell 169, 148-160 e115
    Shimano, H.,Sato, R., 2017. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 13, 710-730
    Soccio, R.E., Chen, E.R.,Lazar, M.A., 2014. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20, 573-591
    Stumvoll, M., Goldstein, B.J.,van Haeften, T.W., 2005. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333-1346
    Sun, Z.,Liu, J.L., 2019. mTOR-S6K1 pathway mediates cytoophidium assembly. J Genet Genomics 46, 65-74
    Titchenell, P.M., Lazar, M.A.,Birnbaum, M.J., 2017. Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol Metab 28, 497-505
    Wang, Z., Lu, Z., Zhao, Y.,Gao, X., 2015. Oxidation-induced water-solubilization and chemical functionalization of fullerenes C60, Gd@C60 and Gd@C82: atomistic insights into the formation mechanisms and structures of fullerenols synthesized by different methods. Nanoscale 7, 2914-2925
    Wua, J., Wang, H.M., Li, J.,Men, X.L., 2013. [The research applications of db/db mouse]. Sheng Li Ke Xue Jin Zhan 44, 12-18
    Xu, J., Wang, S., Feng, T., Chen, Y.,Yang, G., 2018. Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. J Cell Mol Med 22, 6026-6038
    Yang, D., Zhao, Y., Guo, H., Li, Y., Tewary, P., Xing, G., Hou, W., Oppenheim, J.J.,Zhang, N., 2010. [Gd@C82(OH)22]n nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 4, 1178-1186
    Yoon, M.S., 2017. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 9
    Zhen, M., Shu, C., Li, J., Zhang, G., Wang, T., Luo, Y., Zou, T., Deng, R., Fang, F., Lei, H., et al., 2015. A highly efficient and tumor vascular-targeting therapeutic technique with size-expansible gadofullerene nanocrystals. Science China Materials 58, 799-810
    Zhou, Y., Deng, R., Zhen, M., Li, J., Guan, M., Jia, W., Li, X., Zhang, Y., Yu, T., Zou, T., et al., 2017. Amino acid functionalized gadofullerene nanoparticles with superior antitumor activity via destruction of tumor vasculature in vivo. Biomaterials 133, 107-118
    Zhou, Y., Zhen, M., Ma, H., Li, J., Shu, C.,Wang, C., 2018. Inhalable gadofullerenol/[70] fullerenol as high-efficiency ROS scavengers for pulmonary fibrosis therapy. Nanomedicine 14, 1361-1369
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (299) PDF downloads (58) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return