5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

G-quadruplexes in genomes of viruses infecting eukaryotes or prokaryotes are under different selection pressures from hosts

doi: 10.1016/j.jgg.2021.08.018
Funds:

and HZAU-AGIS Cooperation Fund (SZYJY2021010). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. We thank Chen Dong for providing the schematic diagram of viral G-quadruplex on the web page.

We thank Prof. Sisi Liu (College of Science, Huazhong Agricultural University) for the project consultation and Mr. Zhiyuan Huang (College of Informatics, Huazhong Agricultural University) for the graphics visualization. This study was supported by the National Natural Science Foundation of China (21732002, 22077043, 31672558, 31871305, 21907036)

Opening Foundation of State Key Laboratory of Freshwater Ecology and Biotechnology, China (2020FB08)

the Fundamental Research Funds for the (2662018PY021, 2662019PY003, 2662020PY001) Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (2016RC011)

  • Received Date: 2021-05-23
  • Accepted Date: 2021-08-18
  • Rev Recd Date: 2021-08-18
  • Available Online: 2022-02-19
  • Publish Date: 2021-09-30
  • G-quadruplexes in viral genomes can be applied as the targets of antiviral therapies, which has attracted wide interest. However, it is still not clear whether the pervasive number of such elements in the viral world is the result of natural selection for functionality. In this study, we identified putative quadruplex-forming sequences (PQSs) across the known viral genomes and analyzed the abundance, structural stability, and conservation of viral PQSs. A Viral Putative G-quadruplex Database (http://jsjds.hzau.edu.cn/MBPC/ViPGD/index.php/home/index) was constructed to collect the details of each viral PQS, which provides guidance for selecting the desirable PQS. The PQS with two putative G-tetrads (G2-PQS) was significantly enriched in both eukaryotic viruses and prokaryotic viruses, whereas the PQSs with three putative G-tetrads (G3-PQS) were only enriched in eukaryotic viruses and depleted in prokaryotic viruses. The structural stability of PQSs in prokaryotic viruses was significantly lower than that in eukaryotic viruses. Conservation analysis showed that the G2-PQS, instead of G3-PQS, was highly conserved within the genus. This suggested that the G2-quadruplex might play an important role in viral biology, and the difference in the occurrence of G-quadruplex between eukaryotic viruses and prokaryotic viruses may result from the different selection pressures from hosts.
  • loading
  • Artusi, S., Nadai, M., Perrone, R., Biasolo, M.A., Palu, G., Flamand, L., Calistri, A.,Richter, S.N., 2015. The herpes simplex virus-1 genome contains multiple clusters of repeated g-quadruplex:Implications for the antiviral activity of a g-quadruplex ligand. Antivir. Res. 118, 123-131.
    Bailey, T.L., Johnson, J., Grant, C.E., Noble, W.S., 2015. The meme suite. Nucleic Acids Res. 43, W39-49.
    Balasubramanian, S.,Neidle, S., 2009. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol. 13, 345-353.
    Bartas, M., Brazda, V., Bohalova, N., Cantara, A., Volna, A., Stachurova, T., Malachova, K., Jagelska, E.B., Porubiakova, O., Cerven, J., et al., 2020. In-depth bioinformatic analyses of nidovirales including human SARS-CoV-2, SARS-CoV, MERS-CoV viruses suggest important roles of non-canonical nucleic acid structures in their lifecycles. Front Microbiol. 11, 1583.
    Bedrat, A., Lacroix, L.,Mergny, J.L., 2016. Re-evaluation of g-quadruplex propensity with g4hunter. Nucleic Acids Res. 44, 1746-1759.
    Bian, W.X., Xie, Y., Wang, X.N., Xu, G.H., Fu, B.S., Li, S., Long, G., Zhou, X.,Zhang, X.L., 2019. Binding of cellular nucleolin with the viral core RNA g-quadruplex structure suppresses hcv replication. Nucleic Acids Res. 47, 56-68.
    Biswas, P., Jiang, X., Pacchia, A.L., Dougherty, J.P.,Peltz, S.W., 2004. The human immunodeficiency virus type 1 ribosomal frameshifting site is an invariant sequence determinant and an important target for antiviral therapy. J. Virol. 78, 2082-2087.
    Boerneke, M.A., Ehrhardt, J.E.,Weeks, K.M., 2019. Physical and functional analysis of viral RNA genomes by shape. Annu. Rev. Virol. 6, 93-117.
    Bohalova, N., Cantara, A., Bartas, M., Kaura, P., Stastny, J., Pecinka, P., Fojta, M.,Brazda, V., 2021a. Tracing dsdna virus-host coevolution through correlation of their g-quadruplex-forming sequences. Int. J. Mol. Sci. 22.
    Bohalova, N., Cantara, A., Bartas, M., Kaura, P., Stastny, J., Pecinka, P., Fojta, M., Mergny, J.L.,Brazda, V., 2021b. Analyses of viral genomes for g-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie 186, 13-27.
    Brazda, V., Kolomaznik, J., Lysek, J., Bartas, M., Fojta, M., St'astny, J.,Mergny, J.L., 2019. G4hunter web application:A web server for g-quadruplex prediction. Bioinformatics 35, 3493-3495.
    Capra, J.A., Paeschke, K., Singh, M.,Zakian, V.A., 2010. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in saccharomyces cerevisiae. Plos Comput. Biol. 6.
    Chen, F., Wu, P., Deng, S., Zhang, H., Hou, Y., Hu, Z., Zhang, J., Chen, X.,Yang, J.R., 2020. Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nat. Ecol. Evol. 4, 589-600.
    Chen, Z.X., Oliver, B., Zhang, Y.E., Gao, G.,Long, M., 2017. Expressed structurally stable inverted duplicates in mammalian genomes as functional noncoding elements. Genome Biol. Evol. 9, 981-992.
    Cui, H.R.,Zhang, L.L., 2020. G-quadruplexes are present in human coronaviruses including SARS-CoV-2. Front Microbiol. 11.
    Davydov, E.V., Goode, D.L., Sirota, M., Cooper, G.M., Sidow, A.,Batzoglou, S., 2010. Identifying a high fraction of the human genome to be under selective constraint using gerp plus. Plos Comput. Biol. 6.
    Deng, H., Gong, B.W., Yang, Z.Q., Li, Z., Zhou, H., Zhang, Y.S., Niu, X.H., Liu, S.S.,Wei, D.G., 2019. Intensive distribution of g(2)-quaduplexes in the pseudorabies virus genome and their sensitivity to cations and g-quadruplex ligands. Molecules 24.
    Di Antonio, M., Rodriguez, R.,Balasubramanian, S., 2012. Experimental approaches to identify cellular g-quadruplex structures and functions. Methods 57, 84-92.
    Ding, B., 2010. Viroids:Self-replicating, mobile, and fast-evolving noncoding regulatory rnas. Wiley Interdiscip. Rev. RNA 1, 362-375.
    Edgar, R.C., 2004. Muscle:Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.
    Fay, M.M., Lyons, S.M.,Ivanov, P., 2017. RNA g-quadruplexes in biology:Principles and molecular mechanisms. J. Mol. Biol. 429, 2127-2147.
    Frees, S., Menendez, C., Crum, M.,Bagga, P.S., 2014. Qgrs-conserve:A computational method for discovering evolutionarily conserved g-quadruplex motifs. Hum. Genomics 8.
    Gaudin, C., Mazauric, M.H., Traikia, M., Guittet, E., Yoshizawa, S.,Fourmy, D., 2005. Structure of the RNA signal essential for translational frameshifting in hiv-1. J. Mol. Biol. 349, 1024-1035.
    Ge, F.F., Wang, Y., Li, H.Y., Zhang, R., Wang, X.T., Li, Q.Y., Liang, Z.C.,Yang, L., 2019. Plant-gq:An integrative database of g-quadruplex in plant. J. Comput. Biol. 26, 1013-1019.
    Gu, Z.G., Gu, L., Eils, R., Schlesner, M.,Brors, B., 2014. Circlize implements and enhances circular visualization in r. Bioinformatics 30, 2811-2812.
    Guo, J.U.,Bartel, D.P., 2016. RNA g-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353.
    Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M.,Schuster, P., 1994. Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167-188.
    Huppert, J.L.,Balasubramanian, S., 2005a. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908-2916.
    Jaafar, Z.A.,Kieft, J.S., 2019. Viral RNA structure-based strategies to manipulate translation. Nat. Rev. Microbiol. 17, 110-123.
    Ji, D., Juhas, M., Tsang, C.M., Kwok, C.K., Li, Y.,Zhang, Y., 2021. Discovery of g-quadruplex-forming sequences inSARS-CoV-2. Brief. Bioinform. 22, 1150-1160.
    Katoh, K.,Standley, D.M., 2013. Mafft multiple sequence alignment software version 7:Improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.
    Kazlauskas, D., Varsani, A., Koonin, E.V.,Krupovic, M., 2019. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat. Commun. 10.
    Kikin, O., D'Antonio, L.,Bagga, P.S., 2006. Qgrs mapper:A web-based server for predicting g-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34, W676-W682.
    Krupovic, M.,Cvirkaite-Krupovic, V., 2011. Virophages or satellite viruses? Nat. Rev. Microbiol. 9, 762-763.
    Kwok, C.K., Marsico, G.,Balasubramanian, S., 2018. Detecting RNA g-quadruplexes (rg4s) in the transcriptome. Csh. Perspect. Biol. 10.
    Kwong, A.D., Rao, B.G.,Jeang, K.T., 2005. Viral and cellular RNA helicases as antiviral targets. Nat. Rev. Drug Discov. 4, 845-853.
    Lavezzo, E., Berselli, M., Frasson, I., Perrone, R., Palu, G., Brazzale, A.R., Richter, S.N.,Toppo, S., 2018b. G-quadruplex forming sequences in the genome of all known human viruses:A comprehensive guide. PLoS Comput. Biol. 14, e1006675.
    Le, S.Y., Chen, J.H., Chatterjee, D.,Maizel, J.V., 1989. Sequence divergence and open regions of RNA secondary structures in the envelope regions of the 17 human immunodeficiency virus isolates. Nucleic Acids Res. 17, 3275-3288.
    Lever, A.M.L.,Jeang, K.T., 2011. Insights into cellular factors that regulate hiv-1 replication in human cells. Biochemistry-Us 50, 920-931.
    Lombardi, E.P., Holmes, A., Verga, D., Teulade-Fichou, M.P., Nicolas, A.,Londono-Vallejo, A., 2019. Thermodynamically stable and genetically unstable g-quadruplexes are depleted in genomes across species. Nucleic Acids Res. 47, 6098-6113.
    Lorenz, R., Bernhart, S.H., Siederdissen, C.H.Z., Tafer, H., Flamm, C., Stadler, P.F.,Hofacker, I.L., 2011. Viennarna package 2.0. Algorithm. Mol. Biol. 6.
    Madireddy, A., Purushothaman, P., Loosbroock, C.P., Robertson, E.S., Schildkraut, C.L.,Verma, S.C., 2016. G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of kshv. Nucleic Acids Res. 44, 3675-3694.
    Marsico, G., Chambers, V.S., Sahakyan, A.B., McCauley, P., Boutell, J.M., Di Antonio, M.,Balasubramanian, S., 2019. Whole genome experimental maps of DNA g-quadruplexes in multiple species. Nucleic Acids Res. 47, 3862-3874.
    Murat, P., Zhong, J., Lekieffre, L., Cowieson, N.P., Clancy, J.L., Preiss, T., Balasubramanian, S., Khanna, R.,Tellam, J., 2014. G-quadruplexes regulate epstein-barr virus-encoded nuclear antigen 1 mrna translation. Nat. Chem. Biol. 10, 358-U364.
    Nakagawa, K., Lokugamage, K.G.,Makino, S., 2016. Viral and cellular mrna translation in coronavirus-infected cells. Advances in Virus Research, Vol 96:Coronaviruses 96, 165-192.
    Paeschke, K., Bochman, M.L., Garcia, P.D., Cejka, P., Friedman, K.L., Kowalczykowski, S.C.,Zakian, V.A., 2013. Pif1 family helicases suppress genome instability at g-quadruplex motifs. Nature 497, 458-+.
    Pandey, S., Agarwala, P.,Maiti, S., 2013. Effect of loops and g-quartets on the stability of RNA g-quadruplexes. J. Phys. Chem. B 117, 6896-6905.
    Perrone, R., Nadai, M., Frasson, I., Poe, J.A., Butovskaya, E., Smithgall, T.E., Palumbo, M., Palu, G.,Richter, S.N., 2013. A dynamic g-quadruplex region regulates the hiv-1 long terminal repeat promoter. J. Med. Chem. 56, 6521-6530.
    Poltronieri, P., Sun, B.L.,Mallardo, M., 2015. RNA viruses:RNA roles in pathogenesis, coreplication and viral load. Curr. Genomics 16, 327-335.
    Quinlan, A.R.,Hall, I.M., 2010. Bedtools:A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.
    Rhodes, D.,Lipps, H.J., 2015. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 43, 8627-8637.
    Routh, E.D., Creacy, S.D., Beerbower, P.E., Akman, S.A., Vaughn, J.P.,Smaldino, P.J., 2017. A g-quadruplex DNA-affinity approach for purification of enzymatically active g4 resolvase1. Jove-J. Vis. Exp. 121, 55496-55504
    Ruggiero, E.,Richter, S.N., 2020. Viral g-quadruplexes:New frontiers in virus pathogenesis and antiviral therapy. Annu. Rep. Med. Chem. 54, 101-131.
    Ruggiero, E., Tassinari, M., Perrone, R., Nadai, M.,Richter, S.N., 2019. Stable and conserved g-quadruplexes in the long terminal repeat promoter of retroviruses. ACS Infect. Dis. 5, 1150-1159.
    Saranathan, N.,Vivekanandan, P., 2019. G-quadruplexes:More than just a kink in microbial genomes. Trends Microbiol. 27, 148-163.
    Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M.M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., et al., 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034-1050.
    Wang, S.R., Min, Y.Q., Wang, J.Q., Liu, C.X., Fu, B.S., Wu, F., Wu, L.Y., Qiao, Z.X., Song, Y.Y., Xu, G.H., et al., 2016. A highly conserved g-rich consensus sequence in hepatitis c virus core gene represents a new anti-hepatitis c target. Sci. Adv. 2.
    Waxman, L., Whitney, M., Pollok, B.A., Kuo, L.C.,Darke, P.L., 2001. Host cell factor requirement for hepatitis c virus enzyme maturation. P. Natl. Acad. Sci. USA 98, 13931-13935.
    Wei, C., Chen, Y.M., Chen, Y.,Qian, W., 2021. The missing expression level-evolutionary rate anticorrelation in viruses does not support protein function as a main constraint on sequence evolution. Genome Biol. Evol. 13.
    White, K.A., Enjuanes, L.,Berkhout, B., 2011. RNA virus replication, transcription and recombination. RNA Biol. 8, 182-183.
    Witteveldt, J., Blundell, R., Maarleveld, J.J., McFadden, N., Evans, D.J.,Simmonds, P., 2014. The influence of viral RNA secondary structure on interactions with innate host cell defences. Nucleic Acids Res. 42, 3314-3329.
    Yang, X.F., Cheema, J., Zhang, Y.Y., Deng, H.J., Duncan, S., Umar, M.I., Zhao, J.Y., Liu, Q., Cao, X.F., Kwok, C.K., et al., 2020. RNA g-quadruplex structures exist and function in vivo in plants. Genome Biol. 21.
    Zhao, C., Qin, G., Niu, J., Wang, Z., Wang, C., Ren, J.,Qu, X., 2021. Targeting RNA g-quadruplex in SARS-CoV-2:A promising therapeutic target for covid-19? Angew. Chem. Int. Ed. Engl. 60, 432-438.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (225) PDF downloads (15) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return