5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

FGF8-mediated signaling regulates tooth developmental pace during odontogenesis

doi: 10.1016/j.jgg.2021.08.009
Funds:

This study was supported by the National Natural Science Foundation of China (81870739, 82001002, 81271102, 81771034) and the Natural Science Foundation of Fujian Province (2019J01281, 2020J01180).

  • Received Date: 2021-06-01
  • Accepted Date: 2021-08-11
  • Rev Recd Date: 2021-08-10
  • Publish Date: 2021-09-06
  • The developing human and mouse teeth constitute an ideal model system to study the regulatory mechanism underlying organ growth control since their teeth share highly conserved and well-characterized developmental processes, and their developmental tempo varies notably. In the current study, we manipulated heterogenous recombination between human and mouse dental tissues and demonstrated that the dental mesenchyme dominates the tooth developmental tempo and FGF8 could be a critical player during this developmental process. Forced activation of FGF8 signaling in the dental mesenchyme of mice promoted cell proliferation, prevented cell apoptosis via p38 and perhaps PI3K-Akt intracellular signaling, and impelled the transition of the cell cycle from G1- to S-phase in the tooth germ, resulting in the slowdown of the tooth developmental pace. Our results provide compelling evidence that extrinsic signals can profoundly affect tooth developmental tempo, and the dental mesenchymal FGF8 could be a pivotal factor in controlling the developmental pace in a non-cell-autonomous manner during mammalian odontogenesis.
  • loading
  • Abzhanov, A., Tzahor, E., Lassar, A.B., Tabin, C.J., 2003. Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development 130, 4567-4579.
    Baldin, V., Lukas, J., Marcote, M.J., Pagano, M.,Draetta, G., 1993. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev.. 7, 812-821.
    Barry, E.R., Morikawa, T., Butler, B.L., Shrestha, K., de la Rosa, R., Yan, K.S., Fuchs, C.S., Magness, S.T., Smits, R., Ogino, S., et al., 2013. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106-110.
    Brewer, J.R., Mazot, P.,Soriano, P., 2016. Genetic insights into the mechanisms of Fgf signaling. Genes Dev.. 30, 751-771.
    Cai, J., Cho, S.W., Kim, J.Y., Lee, M.J., Cha, Y.G.,Jung, H.S., 2007. Patterning the size and number of tooth and its cusps. Dev. Biol. 304, 499-507.
    Cam, Y., Neumann, M.R., Oliver, L., Raulais, D., Janet, T.,Ruch, J.V., 1992. Immunolocalization of acidic and basic fibroblast growth factors during mouse odontogenesis. Int. J. Dev. Biol. 36, 381-389.
    Castellano, E.,Downward, J., 2011. RAS interaction with PI3K:more than just another effector pathway. Genes Cancer 2, 261-274.
    Chambard, J.C., Lefloch, R., Pouyssegur, J.,Lenormand, P., 2007. ERK implication in cell cycle regulation. Biochim. Biophys. Acta 1773, 1299-1310.
    Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K.,McMahon, A.P., 1998. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323-1326.
    Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A.,Pan, D., 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133.
    Dong, X., Shen, B., Ruan, N., Guan, Z., Zhang, Y., Chen, Y.,Hu, X., 2014. Expression patterns of genes critical for BMP signaling pathway in developing human primary tooth germs. Histochem. Cell Biol. 142, 657-665.
    Edelman, G.M., 1992. Morphoregulation. Dev. Dynam. 193, 2-10.
    Elledge, S.J., 1996. Cell cycle checkpoints:preventing an identity crisis. Science 274, 1664-1672.
    Gartel, A.L.,Radhakrishnan, S.K., 2005. Lost in transcription:p21 repression, mechanisms, and consequences. Canc. Res.. 65, 3980-3985.
    Gokhale, R.H.,Shingleton, A.W., 2015. Size control:the developmental physiology of body and organ size regulation. Wiley Interdiscipl. Rev. Dev. Biol. 4, 335-356.
    Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R.L.,Martin, J.F., 2011. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458-461.
    Hu, X., Lee, J.W., Zheng, X., Zhang, J., Lin, X., Song, Y., Wang, B., Hu, X., Chang, H.H., Chen, Y., et al., 2018. Efficient induction of functional ameloblasts from human keratinocyte stem cells. Stem Cell Res. Ther. 9, 126.
    Hu, X., Lin, C., Shen, B., Ruan, N., Guan, Z., Chen, Y.,Zhang, Y., 2014a. Conserved odontogenic potential in embryonic dental tissues. J. Dent. Res. 93, 490-495.
    Hu, X., Xu, S., Lin, C., Zhang, L., Chen, Y.,Zhang, Y., 2014b. Precise chronology of differentiation of developing human primary dentition. Histochem. Cell Biol. 141, 221-227.
    Hu, X., Zhang, S., Chen, G., Lin, C., Huang, Z., Chen, Y.,Zhang, Y., 2013. Expression of SHH signaling molecules in the developing human primary dentition. BMC Dev. Biol. 13, 11.
    Huang, F., Hu, X., Fang, C., Liu, H., Lin, C., Zhang, Y.,Hu, X., 2015. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition. Histochem. Cell Biol. 144, 457-469.
    Irazoqui, A.P., Boland, R.L.,Buitrago, C.G., 2014. Actions of 1,25(OH)2-vitamin D3 on the cellular cycle depend on VDR and p38 MAPK in skeletal muscle cells. J. Mol. Endocrinol. 53, 331-343.
    Jernvall, J., Kettunen, P., Karavanova, I., Martin, L.B.,Thesleff, I., 1994. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation:non-dividing cells express growth stimulating Fgf-4 gene. Int. J. Dev. Biol. 38, 463-469.
    Jernvall, J.,Thesleff, I., 2000. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 92, 19-29.
    Jheon, A.H., Seidel, K., Biehs, B.,Klein, O.D., 2013. From molecules to mastication:the development and evolution of teeth. Wiley Interdiscipl. Rev. Dev. Biol. 2, 165-182.
    Jiang, T.X., Jung, H.S., Widelitz, R.B.,Chuong, C.M., 1999. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126, 4997-5009.
    Kettunen, P.,Thesleff, I., 1998. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev. Dynam. 211, 256-268.
    Kratochwil, K., Galceran, J., Tontsch, S., Roth, W.,Grosschedl, R., 2002. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev.. 16, 3173-3185.
    Kurosaka, H., Islam, M.N., Kuremoto, K., Hayano, S., Nakamura, M., Kawanabe, N., Yanagita, T., Rice, D.P., Harada, H., Taniuchi, I., et al., 2011. Core binding factor beta functions in the maintenance of stem cells and orchestrates continuous proliferation and differentiation in mouse incisors. Stem Cell. 29, 1792-1803.
    Kwon, H.J., Li, L.,Jung, H.S., 2015. Hippo pathway/Yap regulates primary enamel knot and dental cusp patterning in tooth morphogenesis. Cell Tissue Res.. 362, 447-451.
    Lan, Y., Jia, S.,Jiang, R., 2014. Molecular patterning of the mammalian dentition. Semin. Cell Dev. Biol. 25-26, 61-70.
    Li, C.Y., Prochazka, J., Goodwin, A.F.,Klein, O.D., 2014. Fibroblast growth factor signaling in mammalian tooth development. Odontology 102, 1-13.
    Lin, C., Yin, Y., Bell, S.M., Veith, G.M., Chen, H., Huh, S.H., Ornitz, D.M.,Ma, L., 2013. Delineating a conserved genetic cassette promoting outgrowth of body appendages. PLoS Genet.. 9, e1003231.
    Line, S.R., 2003. Variation of tooth number in mammalian dentition:connecting genetics, development, and evolution. Evol. Dev. 5, 295-304.
    Liu, M., Zhao, S.,Wang, X.P., 2014. YAP overexpression affects tooth morphogenesis and enamel knot patterning. J. Dent. Res. 93, 469-474.
    Lloyd, A.C., 2013. The regulation of cell size. Cell 154, 1194-1205.
    Lui, J.C., Garrison, P.,Baron, J., 2015. Regulation of body growth. Curr. Opin. Pediatr. 27, 502-510.
    Matsuda, M., Hayashi, H., Garcia-Ojalvo, J., Yoshioka-Kobayashi, K., Kageyama, R., Yamanaka, Y., Ikeya, M., Toguchida, J., Alev, C.,Ebisuya, M., 2020. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369, 1450-1455.
    Michailovici, I., Harrington, H.A., Azogui, H.H., Yahalom-Ronen, Y., Plotnikov, A., Ching, S., Stumpf, M.P., Klein, O.D., Seger, R.,Tzahor, E., 2014. Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells. Development 141, 2611-2620.
    Morata, G.,Ripoll, P., 1975. Minutes:mutants of drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211-221.
    Penzo-Mendez, A.I.,Stanger, B.Z., 2015. Organ-size regulation in mammals. Cold Spring Harb. Perspect. Biol. 7, a019240.
    Plikus, M.V., Zeichner-David, M., Mayer, J.A., Reyna, J., Bringas, P., Thewissen, J.G., Snead, M.L., Chai, Y.,Chuong, C.M., 2005. Morphoregulation of teeth:modulating the number, size, shape and differentiation by tuning Bmp activity. Evol. Dev. 7, 440-457.
    Polly, P.D., 2015. Gene networks, occlusal clocks, and functional patches:new understanding of pattern and process in the evolution of the dentition. Odontology 103, 117-125.
    Promislow, D.E.L.,Harvey, P.H., 1990. Living fast and dying young:a comparative analysis of life-history variation among mammals. J. Zool. (1987) 220, 417-437.
    Rayon, T., Stamataki, D., Perez-Carrasco, R., Garcia-Perez, L., Barrington, C., Melchionda, M., Exelby, K., Lazaro, J., Tybulewicz, V.L.J., Fisher, E.M.C., et al., 2020. Species-specific pace of development is associated with differences in protein stability. Science 369 (6510):eaba7667.
    Rodrigues, H.G., Renaud, S., Charles, C., Le Poul, Y., Sole, F., Aguilar, J.P., Michaux, J., Tafforeau, P., Headon, D., Jernvall, J., et al., 2013. Roles of dental development and adaptation in rodent evolution. Nat. Commun. 4, 2504.
    Saeboee-Larssen, S., Lyamouri, M., Merriam, J., Oksvold, M.P.,Lambertsson, A., 1998. Ribosomal protein insufficiency and the minute syndrome in Drosophila:a dose-response relationship. Genetics 148, 1215-1224.
    Salazar-Ciudad, I., 2012. Tooth patterning and evolution. Curr. Opin. Genet. Dev. 22, 585-592.
    Schoenwolf GC, B.S., Brauer PR, Francis-West PH, 2014. Larsen's Human Embryology, fifth ed., Churchill Livingstone, New York.
    Song, H., Mak, K.K., Topol, L., Yun, K., Hu, J., Garrett, L., Chen, Y., Park, O., Chang, J., Simpson, R.M., et al., 2010. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc. Natl. Acad. Sci. U.S.A. 107, 1431-1436.
    Song, Y., Zhang, Z., Yu, X., Yan, M., Zhang, X., Gu, S., Stuart, T., Liu, C., Reiser, J., Zhang, Y., et al., 2006. Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev. Dynam. 235, 1334-1344.
    Sonnen, K.F., Lauschke, V.M., Uraji, J., Falk, H.J., Petersen, Y., Funk, M.C., Beaupeux, M., Francois, P., Merten, C.A.,Aulehla, A., 2018. Modulation of phase shift between Wnt and Notch signaling oscillations controls mesoderm segmentation. Cell 172, 1079-1090.e12.
    St Amand, T.R., Zhang, Y., Semina, E.V., Zhao, X., Hu, Y., Nguyen, L., Murray, J.C.,Chen, Y., 2000. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev. Biol. 217, 323-332.
    Stockl, S., Bauer, R.J., Bosserhoff, A.K., Gottl, C., Grifka, J.,Grassel, S., 2013. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells. J. Cell Sci. 126, 2890-2902.
    Swanson, E.M.,Dantzer, B., 2014. Insulin-like growth factor-1 is associated with life-history variation across Mammalia. Proc. Biol. Sci. 281, 20132458.
    Tapaltsyan, V., Charles, C., Hu, J., Mindell, D., Ahituv, N., Wilson, G.M., Black, B.L., Viriot, L.,Klein, O.D., 2016. Identification of novel Fgf enhancers and their role in dental evolution. Evol. Dev. 18, 31-40.
    Thesleff, I.,Mikkola, M., 2002. The role of growth factors in tooth development. Int. Rev. Cytol. 217, 93-135.
    Thesleff, I.,Sharpe, P., 1997. Signalling networks regulating dental development. Mech. Dev. 67, 111-123.
    Tucker, A.,Sharpe, P., 2004. The cutting-edge of mammalian development; how the embryo makes teeth. Nat. Rev. Genet. 5, 499-508.
    Tumaneng, K., Russell, R.C.,Guan, K.L., 2012. Organ size control by Hippo and TOR pathways. Curr. Biol. 22, R368-R379.
    Tummers, M.,Thesleff, I., 2009. The importance of signal pathway modulation in all aspects of tooth development. J. Exp. Zool. B Mol. Dev. Evol. 312B, 309-319.
    Vandomme, J., Touil, Y., Ostyn, P., Olejnik, C., Flamenco, P., El Machhour, R., Segard, P., Masselot, B., Bailliez, Y., Formstecher, P., et al., 2014. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation. Stem Cell. Dev.. 23, 839-851.
    Vea, I.M.,Shingleton, A.W., 2021. Network-regulated organ allometry:the developmental regulation of morphological scaling. Wiley Interdiscipl. Rev. Dev. Biol. 10, e391.
    Wang, B., Li, L., Du, S., Liu, C., Lin, X., Chen, Y.,Zhang, Y., 2010. Induction of human keratinocytes into enamel-secreting ameloblasts. Dev. Biol. 344, 795-799.
    Xiong, W., He, F., Morikawa, Y., Yu, X., Zhang, Z., Lan, Y., Jiang, R., Cserjesi, P.,Chen, Y., 2009. Hand2 is required in the epithelium for palatogenesis in mice. Dev. Biol. 330, 131-141.
    Xue, X.J.,Yuan, X.B., 2010. Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells. Mol. Cell. Neurosci. 45, 26-36.
    Yang, G., Yuan, G., Ye, W., Cho, K.W.,Chen, Y., 2014. An atypical canonical bone morphogenetic protein (BMP) signaling pathway regulates Msh homeobox 1 (Msx1) expression during odontogenesis. J. Biol. Chem. 289, 31492-31502.
    Yu, F.X., Zhao, B.,Guan, K.L., 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811-828.
    Zaina, S.,Squire, S., 1998. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. J. Biol. Chem. 273, 28610-28616.
    Zhang, P., Pei, C., Wang, X., Xiang, J., Sun, B.F., Cheng, Y., Qi, X., Marchetti, M., Xu, J.W., Sun, Y.P., et al., 2017. A balance of Yki/Sd activator and E2F1/Sd repressor complexes controls cell survival and affects organ size. Dev. Cell 43, 603-617 e605.
    Zhang, Y., Wang, S., Song, Y., Han, J., Chai, Y.,Chen, Y., 2003. Timing of odontogenic neural crest cell migration and tooth-forming capability in mice. Dev. Dynam. 226, 713-718.
    Zhang, Y.D., Chen, Z., Song, Y.Q., Liu, C.,Chen, Y.P., 2005. Making a tooth:growth factors, transcription factors, and stem cells. Cell Res.. 15, 301-316.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (305) PDF downloads (24) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return