5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 9
Sep.  2021
Turn off MathJax
Article Contents

Altered gut microbiome in FUT2 loss-of-function mutants in support of personalized medicine for inflammatory bowel diseases

doi: 10.1016/j.jgg.2021.08.003
Funds:

The authors thank Dr. Lishuo Shi (the Clinical Research Center, the Sixth Affiliated Hospital of Sun Yat-Sen University) for providing valuable advices on statistical analysis. This work was supported by Guangdong Province "Pearl River Talent Plan" Innovation and Entrepreneurship Team Project 2019ZT08Y464 (to L.Z.), the National Natural Science Foundation of China 81770571 (to L.Z.), 82000536 (to N.J.), National Postdoctoral Program for Innovative Talents of China BX20190393 (to N.J.), China Postdoctoral Science Foundation 2019M663252 (to N.J.), Fundamental Research Funds for the Central Universities 19ykzd01 (to L.Z.), and 20kypy07 (to N.J.).

  • Received Date: 2021-07-18
  • Accepted Date: 2021-08-05
  • Rev Recd Date: 2021-08-03
  • Publish Date: 2021-08-20
  • The FUT2 loss-of-function mutations are highly prevalent and are associated with inflammatory bowel disease (IBD). To investigate the impact of FUT2 loss-of-function mutation on the gut microbiota in patients with IBD, 81 endoscopically confirmed IBD patients were genotyped and divided into 3 groups:homozygous for functional FUT2 genes (SeSe), with one copy of non-functional FUT2 gene (Sese), or homozygous for non-functional FUT2 genes (sese). Escherichia, which attaches to fucosylated glycoconjugates, was the only abundant genus exhibiting decreased abundance in sese patients. Compared with SeSe or Sese patients, sese patients exhibited higher abundance in CD8+ inducing Alistipe and Phascolarctobacterium and Th17 inducing Erysipelotrichaceae UCG-003. Counter-intuitively, butyrate-producing bacteria were more abundant in sese patients. Consistently, metabolomics analysis found higher levels of butyrate in sese patients. Our data support the hypothesis that FUT2 loss-of-function mutation participates in the IBD pathogenesis by decreasing binding sites for adherent bacteria and thus altering the gut microbiota. Decreased abundances of adherent bacteria may allow the overgrowth of bacteria that induce inflammatory T cells, leading to intestinal inflammation. As FUT2 loss-of-function mutations are highly prevalent, the identification of T cell inducing bacteria in sese patients could be valuable for the development of personalized microbial intervention for IBD.
  • loading
  • Aheman, A., Luo, H.S., Gao, F., 2012. Association of fucosyltransferase 2 gene variants with ulcerative colitis in Han and Uyghur patients in China. World J. Gastroenterol. 18, 4758-4764.
    Aldredge, D.L., Geronimo, M.R., Hua, S., Nwosu, C.C., Lebrilla, C.B., Barile, D., 2013. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures. Glycobiology 23, 664-676.
    Ananthakrishnan, A.N., 2015. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205-217.
    Atarashi, K., Suda, W., Luo, C., Kawaguchi, T., Motoo, I., Narushima, S., Kiguchi, Y., Yasuma, K., Watanabe, E., Tanoue, T., 2017. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359-365.
    Atarashi, K., Tanoue, T., Ando, M., Kamada, N., Nagano, Y., Narushima, S., Suda, W., Imaoka, A., Setoyama, H., Nagamori, T., 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367-380.
    Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., Gregory Caporaso, J., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6, 90.
    Boren, T., Falk, P., Roth, K.A., Larson, G., Normark, S., 1993. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892-1895.
    Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581-583.
    Chan, R.C., Reid, G., Irvin, R.T., Bruce, A.W., Costerton, J.W., 1985. Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect. Immun. 47, 84-89.
    Chang, P.V., Hao, L., Offermanns, S., Medzhitov, R., 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U. S. A. 111, 2247-2252.
    De Maesschalck, C., Van Immerseel, F., Eeckhaut, V., De Baere, S., Cnockaert, M., Croubels, S., Haesebrouck, F., Ducatelle, R., Vandamme, P., 2014. Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. Int. J. Syst. Evol. Microbiol. 64, 3877-3884.
    DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L., 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069-5072.
    Ferrer-Admetlla, A., Sikora, M., Laayouni, H., Esteve, A., Roubinet, F., Blancher, A., Calafell, F., Bertranpetit, J., Casals, F., 2009. A natural history of FUT2 polymorphism in humans. Mol. Biol. Evol. 26, 1993-2003.
    Franke, A., McGovern, D.P., Barrett, J.C., Wang, K., Radford-Smith, G.L., Ahmad, T., Lees, C.W., Balschun, T., Lee, J., Roberts, R., 2010. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118-1125.
    Froman, G., Switalski, L.M., Faris, A., Wadstrom, T., Hook, M., 1984. Binding of Escherichia coli to fibronectin. A mechanism of tissue adherence. J. Biol. Chem. 259, 14899-14905.
    Hao, H., Zhu, L., Faden, H.S., 2019. The milk-based diet of infancy and the gut microbiome. Gastroenterol. Rep(Oxf). 7, 246-249.
    Imhann, F., Vich Vila, A., Bonder, M.J., Fu, J., Gevers, D., Visschedijk, M.C., Spekhorst, L.M., Alberts, R., Franke, L., van Dullemen, H.M., 2018. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67, 108-119.
    Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.
    Kuhn, N.J., 1972. The lactose and neuraminlactose content of rat milk and mammary tissue. Biochem. J. 130, 177-180.
    Lai, T.Y., Chen, I.J., Lin, R.J., Liao, G.S., Yeo, H.L., Ho, C.L., Wu, J.C., Chang, N.C., Lee, A.C., Yu, A.L., 2019. Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells. Cell Death Dis. 5, 74.
    Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814-821.
    Lindesmith, L., Moe, C., Marionneau, S., Ruvoen, N., Jiang, X., Lindblad, L., Stewart, P., LePendu, J., Baric, R., 2003. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548-553.
    Lloyd-Price, J., Arze, C., Ananthakrishnan, A.N., Schirmer, M., Avila-Pacheco, J., Poon, T.W., Andrews, E., Ajami, N.J., Bonham, K.S., Brislawn, C.J., 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655-662.
    Louis, P., Flint, H.J., 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294, 1-8.
    Lozupone, C., Lladser, M.E., Knights, D., Stombaugh, J., Knight, R., 2011. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169-172.
    Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275-1283.
    Magalhaes, A., Gomes, J., Ismail, M.N., Haslam, S.M., Mendes, N., Osorio, H., David, L., Le Pendu, J., Haas, R., Dell, A., 2009. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology 19, 1525-1536.
    Marionneau, S., Airaud, F., Bovin, N.V., Le Pendu, J., Ruvoen-Clouet, N., 2005. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J. Infect. Dis. 192, 1071-1077.
    McGovern, D.P., Jones, M.R., Taylor, K.D., Marciante, K., Yan, X., Dubinsky, M., Ippoliti, A., Vasiliauskas, E., Berel, D., Derkowski, C., 2010. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Hum. Mol. Genet. 19, 3468-3476.
    Nagalingam, N.A., Kao, J.Y., Young, V.B., 2011. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis. Inflamm. Bowel Dis. 17, 917-926.
    Orczyk-Pawilowicz, M., Hirnle, L., Berghausen-Mazur, M., Katnik-Prastowska, I., 2015. Terminal glycotope expression on milk fibronectin differs from plasma fibronectin and changes over lactation. Clin. Biochem. 48, 167-173.
    Parmar, A.S., Alakulppi, N., Paavola-Sakki, P., Kurppa, K., Halme, L., Farkkila, M., Turunen, U., Lappalainen, M., Kontula, K., Kaukinen, K., 2012. Association study of FUT2 (rs601338) with celiac disease and inflammatory bowel disease in the Finnish population. Tissue Antigens 80, 488-493.
    Polansky, O., Sekelova, Z., Faldynova, M., Sebkova, A., Sisak, F., Rychlik, I., 2015. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl. Environ. Microbiol. 82, 1569-1576.
    Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.
    Prieto, P.A., Mukerji, P., Kelder, B., Erney, R., Gonzalez, D., Yun, J.S., Smith, D.F., Moremen, K.W., Nardelli, C., Pierce, M., 1995. Remodeling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase. J. Biol. Chem. 270, 29515-29519.
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-D596.
    Rausch, P., Rehman, A., Kunzel, S., Hasler, R., Ott, S.J., Schreiber, S., Rosenstiel, P., Franke, A., Baines, J.F., 2011. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl. Acad. Sci. U.S.A. 108, 19030-19035.
    Rosero, J.A., Killer, J., Sechovcova, H., Mrazek, J., Benada, O., Fliegerova, K., Havlik, J., Kopecny, J., 2016. Reclassification of Eubacterium rectale (Hauduroy et al. 1937) Prévot 1938 in a new genus Agathobacter gen. nov. as Agathobacter rectalis comb. nov., and description of Agathobacter ruminis sp. nov., isolated from the rumen contents of sheep and cows. Int. Syst. Evol. Microbiol. 66, 768-773.
    Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.
    Song, Y., Malmuthuge, N., Steele, M.A., Guan, L.L., 2018. Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning. FEMS Microbiol. Ecol. 94, 10.1093/femsec/fix179.
    Spor, A., Koren, O., Ley, R., 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279-290.
    Stewart, C.S., Duncan, S.H., Cave, D.R., 2004. Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiol. Lett. 230, 1-7.
    Tang, X., Wang, W., Hong, G., Duan, C., Zhu, S., Tian, Y., Han, C., Qian, W., Lin, R., Hou, X., 2021. Gut microbiota-mediated lysophosphatidylcholine generation promotes colitis in intestinal epithelium-specific Fut2 deficiency. J. Biomed. Sci. 28, 20.
    Tanoue, T., Morita, S., Plichta, D.R., Skelly, A.N., Suda, W., Sugiura, Y., Narushima, S., Vlamakis, H., Motoo, I., Sugita, K., 2019. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600-605.
    Tong, M., McHardy, I., Ruegger, P., Goudarzi, M., Kashyap, P.C., Haritunians, T., Li, X., Graeber, T.G., Schwager, E., Huttenhower, C., 2014. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J. 8, 2193-2206.
    Vital, M., Karch, A., Pieper, D.H., Colonic butyrate-producing communities in humans: an overview using omics data. mSystems 2, e00130e17.
    Wacklin, P., Tuimala, J., Nikkila, J., Sebastian, T., Makivuokko, H., Alakulppi, N., Laine, P., Rajilic-Stojanovic, M., Paulin, L., de Vos, W.M., 2014. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One 9, e94863.
    Watanabe, M., Kinoshita, H., Nitta, M., Yukishita, R., Kawai, Y., Kimura, K., Taketomo, N., Yamazaki, Y., Tateno, Y., Miura, K., 2010. Identification of a new adhesin-like protein from Lactobacillus mucosae ME-340 with specific affinity to the human blood group A and B antigens. J. Appl. Microbiol. 109, 927-935.
    Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight, R., 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105-108.
    Yang, P., Li, H.L., Wang, C.Y., 2011. FUT2 nonfunctional variant: a "missing link" between genes and environment in type 1 diabetes?. Diabetes 60, 2685-2687.
    Ye, B.D., Kim, B.M., Jung, S., Lee, H.S., Hong, M., Kim, K., Moon, J.W., Baek, J., Oh, E.H., Hwang, S.W., 2020. Association of FUT2 and ABO with Crohn's disease in Koreans. J. Gastroenterol. Hepatol. 35, 104-109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (323) PDF downloads (37) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return