Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32-46.
|
Ames, N.J., Barb, J.J., Schuebel, K., Mudra, S., Meeks, B.K., Tuason, R.T.S., Brooks, A.T., Kazmi, N., Yang, S., Ratteree, K., 2020. Longitudinal gut microbiome changes in alcohol use disorder are influenced by abstinence and drinking quantity. Gut Microb. 11, 1608-1631.
|
Barnett, I.J., Lin, X., 2014. Analytical P-value calculation for the higher criticism test in finite-d problems. Biometrika 101, 964-970.
|
Barnett, I., Mukherjee, R., Lin, X., 2017. The generalized higher criticism for testing SNP-set effects in genetic association studies. J. Am. Stat. Assoc. 112, 64-76.
|
Bray, J.R., Curtis, J.T., 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325-349.
|
Boulangé, C.L., Neves, A.L., Chilloux, J., Nicholson, J.K., Dumas, M.-E., 2016. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8, 42.
|
Brunkwall, L., Orho-Melander, M., 2017. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 60, 943-951.
|
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336.
|
Charlson, E.S., Chen, J., Custers-Allen, R., Bittinger, K., Li, H., Sinha, R., Hwang, J., Bushman, F.D., Collman, R.G., 2010. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One 5, e15216.
|
Churchill, G.A., Doerge, R.W., 1994. Empirical threshold values for quantitative trait mapping. Genetics 138, 963-971.
|
Donoho, D., Jin, J., 2004. Higher criticism for detecting sparse heterogeneous mixtures. Ann. Stat. 32, 962-994.
|
Duvallet, C., Gibbons, S.M., Gurry, T., Irizarry, R.A., Alm, E.J., 2017. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784.
|
Escobar, J.S., Klotz, B., Valdes, B.E., Agudelo, G.M., 2014. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 14, 311.
|
Fan, X., Peters, B.A., Jacobs, E.J., Gapstur, S.M., Purdue, M.P., Freedman, N.D., Alekseyenko, A.V., Wu, J., Yang, L., Pei, Z., Hayes, R.B., Ahn, J., 2018. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 6, 59.
|
Fan, Y., Pedersen, O., 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55-71.
|
Franzosa, E.A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H.J., Reinker, S., Vatanen, T., Hall, A.B., Mallick, H., McIver, L.J., 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293-305.
|
Gregory, T.R., 2008. Understanding evolutionary trees. Evol. Educ. Outreach 1, 121-137.
|
Haase, S., Haghikia, A., Wilck, N., Müller, D.N., Linker, R.A., 2018. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology 154, 230-238.
|
Hill, J.H., Round, J.L., 2021. SnapShot: microbiota effects on host physiology. Cell 184, 2796.
|
Holscher, H.D., 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microb. 8, 172-184.
|
Hou, Y.-P., He, Q.-Q., Ouyang, H.-M., Peng, H.-S., Wang, Q., Li, J., Lv, X.-F., Zheng, Y.-N., Li, S.-C., Liu, H.-L., 2017. Human gut microbiota associated with obesity in Chinese children and adolescents. BioMed Res. Int. 2017, 1-8.
|
Jing, G., Zhang, Y., Yang, M., Liu, L., Xu, J., Su, X., 2020. Dynamic Meta-Storms enables comprehensive taxonomic and phylogenetic comparison of shotgun metagenomes at the species level. Bioinformatics 36, 2308-2310.
|
Kang, D.-W., Park, J.G., Ilhan, Z.E., Wallstrom, G., LaBaer, J., Adams, J.B., Krajmalnik-Brown, R., 2013. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8, e68322.
|
Kho, Z.Y., Lal, S.K., 2018. The human gut microbiome- a potential controller of wellness and disease. Front. Microbiol. 9, 1835.
|
Koh, H., 2018. An adaptive microbiome α-diversity-based association analysis method. Sci. Rep. 8, 18026.
|
Koh, H., Blaser, M.J., Li, H., 2017. A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping. Microbiome 5, 45.
|
Koh, H., Livanos, A.E., Blaser, M.J., Li, H., 2018. A highly adaptive microbiome -based association test for survival traits. BMC Genom. 19, 210.
|
Koh, H., Zhao, N., 2020. A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals. Microbiome 8, 63.
|
Krajmalnik-Brown, R., Ilhan, Z.-E., Kang, D.-W., DiBaise, J.K., 2012. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27, 201-214.
|
Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.
|
Louis, S., Tappu, R.-M., Damms-Machado, A., Huson, D.H., Bischoff, S.C., 2016. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS One 11, e0149564.
|
Lv, B.-M., Quan, Y., Zhang, H.-Y., 2021. Causal inference in microbiome medicine: principles and applications. Trends Microbiol. 29, 736-746.
|
Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., Balamurugan, R., 2020. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients?. Nutrients 12, 1474.
|
Manor, O., Dai, C.L., Kornilov, S.A., Smith, B., Price, N.D., Lovejoy, J.C., Gibbons, S.M., Magis, A.T., 2020. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206.
|
Maruvada, P., Leone, V., Kaplan, L.M., Chang, E.B., 2017. The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22, 589-599.
|
McDonald, D., Vázquez-Baeza, Y., Koslicki, D., McClelland, J., Reeve, N., Xu, Z., Gonzalez, A., Knight, R., 2018. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat. Methods 15, 847-848.
|
Miggiano, R., Rizzi, M., Ferraris, D.M., 2020. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment. Pathogens 9, 385.
|
Nguyen, N.-P., Warnow, T., Pop, M., White, B., 2016. A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes 2, 16004.
|
Pan, W., Kim, J., Zhang, Y., Shen, X., Wei, P., 2014. A powerful and adaptive association test for rare variants. Genetics 197, 1081-1095.
|
Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290.
|
Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., Hugenholtz, P., 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996-1004.
|
Plantinga, A., Zhan, X., Zhao, N., Chen, J., Jenq, R.R., Wu, M.C., 2017. MiRKAT-S: a community-level test of association between the microbiota and survival times. Microbiome 5, 17.
|
Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55-60.
|
Reynolds, A.P., Richards, G., de la Iglesia, B., Rayward-Smith, V.J., 2006. Clustering Rules: a comparison of partitioning and hierarchical clustering algorithms. J. Math. Model. Algorithm. 5, 475-504.
|
Sato, J., Kanazawa, A., Ikeda, F., Yoshihara, T., Goto, H., Abe, H., Komiya, K., Kawaguchi, M., Shimizu, T., Ogihara, T., 2014. Gut dysbiosis and detection of "Live gut bacteria" in blood of Japanese patients with Type 2 Diabetes. Diabetes Care 37, 2343-2350.
|
Saus, E., Iraola-Guzmán, S., Willis, J.R., Brunet-Vega, A., Gabaldón, T., 2019. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol. Aspect. Med. 69, 93-106.
|
Simes, R.J., 1986. An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751-754.
|
Shortt, C., Hasselwander, O., Meynier, A., Nauta, A., Fernández, E.N., Putz, P., Rowland, I., Swann, J., Türk, J., Vermeiren, J., 2018. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur. J. Nutr. 57, 25-49.
|
Ursell, L.K., Metcalf, J.L., Parfrey, L.W., Knight, R., 2012. Defining the human microbiome. Nutr. Rev. 70, S38-S44.
|
Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., Jia, W., Cai, S., Zhao, L., 2012. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320-329.
|
Wu, C., Chen, J., Kim, J., Pan, W., 2016. An adaptive association test for microbiome data. Genome Med. 8, 56.
|
Wu, J., Peters, B.A., Dominianni, C., Zhang, Y., Pei, Z., Yang, L., Ma, Y., Purdue, M.P., Jacobs, E.J., Gapstur, S.M., 2016. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 10, 2435-2446.
|
Ye, C., Liu, L., Ma, X., Tong, H., Gao, J., Tai, Y., Huang, L., Tang, C., Wang, R., 2019. Obesity aggravates acute pancreatitis via damaging intestinal mucosal barrier and changing microbiota composition in rats. Sci. Rep. 9, 69.
|
Young, V.B., 2017. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356, j831.
|
Yuan, X., Chen, R., McCormick, K.L., Zhang, Y., Lin, X., Yang, X., 2021. The role of the gut microbiota on the metabolic status of obese children. Microb. Cell Factories 20, 53.
|
Zhao, N., Chen, J., Carroll, I.M., Ringel-Kulka, T., Epstein, M.P., Zhou, H., Zhou, J.J., Ringel, Y., Li, H., Wu, M.C., 2015. Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test. Am. J. Hum. Genet. 96, 797-807.
|
Zhan, X., Tong, X., Zhao, N., Maity, A., Wu, M.C., Chen, J., 2017. A small-sample multivariate kernel machine test for microbiome association studies. Genet. Epidemiol. 41, 210-220.
|