5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 9
Sep.  2021
Turn off MathJax
Article Contents

A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels

doi: 10.1016/j.jgg.2021.08.002
Funds:

We would like to express our deepest appreciation for all the code and data cited in this paper. We are also grateful to Koh Hyunwook for his approaches, which have inspired our work. We thank the reviewers for their helpful and constructive comments. This work has been supported by the National Natural Science Foundation of China (61872157, 61932008, 61532008) and the Key Research and Development Program of Hubei Province (2020BAB017).

  • Received Date: 2021-04-30
  • Accepted Date: 2021-08-06
  • Rev Recd Date: 2021-08-06
  • Publish Date: 2021-08-16
  • The dysbiosis of microbiome may have negative effects on a host phenotype. The microbes related to the host phenotype are regarded as microbial association signals. Recently, statistical methods based on microbiome-phenotype association tests have been extensively developed to detect these association signals. However, the currently available methods do not perform well to detect microbial association signals when dealing with diverse sparsity levels (i.e., sparse, low sparse, non-sparse). Actually, the real association patterns related to different host phenotypes are not unique. Here, we propose a powerful and adaptive microbiome-based association test to detect microbial association signals with diverse sparsity levels, designated as MiATDS. In particular, we define probability degree to measure the associations between microbes and the host phenotype and introduce the adaptive weighted sum of powered score tests by considering both probability degree and phylogenetic information. We design numerous simulation experiments for the task of detecting association signals with diverse sparsity levels to prove the performance of the method. We find that type I error rates can be well-controlled and MiATDS shows superior effciency on the power. By applying to real data analysis, MiATDS displays reliable practicability too. The R package is available at https://github.com/XiaoyunHuang33/MiATDS.
  • loading
  • Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32-46.
    Ames, N.J., Barb, J.J., Schuebel, K., Mudra, S., Meeks, B.K., Tuason, R.T.S., Brooks, A.T., Kazmi, N., Yang, S., Ratteree, K., 2020. Longitudinal gut microbiome changes in alcohol use disorder are influenced by abstinence and drinking quantity. Gut Microb. 11, 1608-1631.
    Barnett, I.J., Lin, X., 2014. Analytical P-value calculation for the higher criticism test in finite-d problems. Biometrika 101, 964-970.
    Barnett, I., Mukherjee, R., Lin, X., 2017. The generalized higher criticism for testing SNP-set effects in genetic association studies. J. Am. Stat. Assoc. 112, 64-76.
    Bray, J.R., Curtis, J.T., 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325-349.
    Boulangé, C.L., Neves, A.L., Chilloux, J., Nicholson, J.K., Dumas, M.-E., 2016. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8, 42.
    Brunkwall, L., Orho-Melander, M., 2017. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 60, 943-951.
    Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336.
    Charlson, E.S., Chen, J., Custers-Allen, R., Bittinger, K., Li, H., Sinha, R., Hwang, J., Bushman, F.D., Collman, R.G., 2010. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One 5, e15216.
    Churchill, G.A., Doerge, R.W., 1994. Empirical threshold values for quantitative trait mapping. Genetics 138, 963-971.
    Donoho, D., Jin, J., 2004. Higher criticism for detecting sparse heterogeneous mixtures. Ann. Stat. 32, 962-994.
    Duvallet, C., Gibbons, S.M., Gurry, T., Irizarry, R.A., Alm, E.J., 2017. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784.
    Escobar, J.S., Klotz, B., Valdes, B.E., Agudelo, G.M., 2014. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 14, 311.
    Fan, X., Peters, B.A., Jacobs, E.J., Gapstur, S.M., Purdue, M.P., Freedman, N.D., Alekseyenko, A.V., Wu, J., Yang, L., Pei, Z., Hayes, R.B., Ahn, J., 2018. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 6, 59.
    Fan, Y., Pedersen, O., 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55-71.
    Franzosa, E.A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H.J., Reinker, S., Vatanen, T., Hall, A.B., Mallick, H., McIver, L.J., 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293-305.
    Gregory, T.R., 2008. Understanding evolutionary trees. Evol. Educ. Outreach 1, 121-137.
    Haase, S., Haghikia, A., Wilck, N., Müller, D.N., Linker, R.A., 2018. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology 154, 230-238.
    Hill, J.H., Round, J.L., 2021. SnapShot: microbiota effects on host physiology. Cell 184, 2796.
    Holscher, H.D., 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microb. 8, 172-184.
    Hou, Y.-P., He, Q.-Q., Ouyang, H.-M., Peng, H.-S., Wang, Q., Li, J., Lv, X.-F., Zheng, Y.-N., Li, S.-C., Liu, H.-L., 2017. Human gut microbiota associated with obesity in Chinese children and adolescents. BioMed Res. Int. 2017, 1-8.
    Jing, G., Zhang, Y., Yang, M., Liu, L., Xu, J., Su, X., 2020. Dynamic Meta-Storms enables comprehensive taxonomic and phylogenetic comparison of shotgun metagenomes at the species level. Bioinformatics 36, 2308-2310.
    Kang, D.-W., Park, J.G., Ilhan, Z.E., Wallstrom, G., LaBaer, J., Adams, J.B., Krajmalnik-Brown, R., 2013. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8, e68322.
    Kho, Z.Y., Lal, S.K., 2018. The human gut microbiome- a potential controller of wellness and disease. Front. Microbiol. 9, 1835.
    Koh, H., 2018. An adaptive microbiome α-diversity-based association analysis method. Sci. Rep. 8, 18026.
    Koh, H., Blaser, M.J., Li, H., 2017. A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping. Microbiome 5, 45.
    Koh, H., Livanos, A.E., Blaser, M.J., Li, H., 2018. A highly adaptive microbiome -based association test for survival traits. BMC Genom. 19, 210.
    Koh, H., Zhao, N., 2020. A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals. Microbiome 8, 63.
    Krajmalnik-Brown, R., Ilhan, Z.-E., Kang, D.-W., DiBaise, J.K., 2012. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27, 201-214.
    Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.
    Louis, S., Tappu, R.-M., Damms-Machado, A., Huson, D.H., Bischoff, S.C., 2016. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS One 11, e0149564.
    Lv, B.-M., Quan, Y., Zhang, H.-Y., 2021. Causal inference in microbiome medicine: principles and applications. Trends Microbiol. 29, 736-746.
    Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., Balamurugan, R., 2020. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients?. Nutrients 12, 1474.
    Manor, O., Dai, C.L., Kornilov, S.A., Smith, B., Price, N.D., Lovejoy, J.C., Gibbons, S.M., Magis, A.T., 2020. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206.
    Maruvada, P., Leone, V., Kaplan, L.M., Chang, E.B., 2017. The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22, 589-599.
    McDonald, D., Vázquez-Baeza, Y., Koslicki, D., McClelland, J., Reeve, N., Xu, Z., Gonzalez, A., Knight, R., 2018. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat. Methods 15, 847-848.
    Miggiano, R., Rizzi, M., Ferraris, D.M., 2020. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment. Pathogens 9, 385.
    Nguyen, N.-P., Warnow, T., Pop, M., White, B., 2016. A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes 2, 16004.
    Pan, W., Kim, J., Zhang, Y., Shen, X., Wei, P., 2014. A powerful and adaptive association test for rare variants. Genetics 197, 1081-1095.
    Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290.
    Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., Hugenholtz, P., 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996-1004.
    Plantinga, A., Zhan, X., Zhao, N., Chen, J., Jenq, R.R., Wu, M.C., 2017. MiRKAT-S: a community-level test of association between the microbiota and survival times. Microbiome 5, 17.
    Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55-60.
    Reynolds, A.P., Richards, G., de la Iglesia, B., Rayward-Smith, V.J., 2006. Clustering Rules: a comparison of partitioning and hierarchical clustering algorithms. J. Math. Model. Algorithm. 5, 475-504.
    Sato, J., Kanazawa, A., Ikeda, F., Yoshihara, T., Goto, H., Abe, H., Komiya, K., Kawaguchi, M., Shimizu, T., Ogihara, T., 2014. Gut dysbiosis and detection of "Live gut bacteria" in blood of Japanese patients with Type 2 Diabetes. Diabetes Care 37, 2343-2350.
    Saus, E., Iraola-Guzmán, S., Willis, J.R., Brunet-Vega, A., Gabaldón, T., 2019. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol. Aspect. Med. 69, 93-106.
    Simes, R.J., 1986. An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751-754.
    Shortt, C., Hasselwander, O., Meynier, A., Nauta, A., Fernández, E.N., Putz, P., Rowland, I., Swann, J., Türk, J., Vermeiren, J., 2018. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur. J. Nutr. 57, 25-49.
    Ursell, L.K., Metcalf, J.L., Parfrey, L.W., Knight, R., 2012. Defining the human microbiome. Nutr. Rev. 70, S38-S44.
    Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., Jia, W., Cai, S., Zhao, L., 2012. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320-329.
    Wu, C., Chen, J., Kim, J., Pan, W., 2016. An adaptive association test for microbiome data. Genome Med. 8, 56.
    Wu, J., Peters, B.A., Dominianni, C., Zhang, Y., Pei, Z., Yang, L., Ma, Y., Purdue, M.P., Jacobs, E.J., Gapstur, S.M., 2016. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 10, 2435-2446.
    Ye, C., Liu, L., Ma, X., Tong, H., Gao, J., Tai, Y., Huang, L., Tang, C., Wang, R., 2019. Obesity aggravates acute pancreatitis via damaging intestinal mucosal barrier and changing microbiota composition in rats. Sci. Rep. 9, 69.
    Young, V.B., 2017. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356, j831.
    Yuan, X., Chen, R., McCormick, K.L., Zhang, Y., Lin, X., Yang, X., 2021. The role of the gut microbiota on the metabolic status of obese children. Microb. Cell Factories 20, 53.
    Zhao, N., Chen, J., Carroll, I.M., Ringel-Kulka, T., Epstein, M.P., Zhou, H., Zhou, J.J., Ringel, Y., Li, H., Wu, M.C., 2015. Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test. Am. J. Hum. Genet. 96, 797-807.
    Zhan, X., Tong, X., Zhao, N., Maity, A., Wu, M.C., Chen, J., 2017. A small-sample multivariate kernel machine test for microbiome association studies. Genet. Epidemiol. 41, 210-220.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (153) PDF downloads (11) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return