Allen, B.L., Taatjes, D.J., 2015. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155-166.
|
Almeida, M., Pintacuda, G., Masui, O., Koseki, Y., Gdula, M., Cerase, A., Brown, D., Mould, A., Innocent, C., Nakayama, M., et al., 2017. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356, 1081-1084.
|
Banani, S.F., Lee, H.O., Hyman, A.A., Rosen, M.K., 2017. Biomolecular condensates:organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298.
|
Banerjee, I., Miyake, Y., Nobs, S.P., Schneider, C., Horvath, P., Kopf, M., Matthias, P., Helenius, A., Yamauchi, Y., 2014. Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346, 473-477.
|
Bergeron-Sandoval, L.P., Safaee, N., Michnick, S.W., 2016. Mechanisms and consequences of macromolecular phase separation. Cell 165, 1067-1079.
|
Biamonti, G., Vourc’h, C., 2010. Nuclear stress bodies. Cold Spring Harb. Perspect. Biol. 2, a000695.
|
Boehning, M., Dugast-Darzacq, C., Rankovic, M., Hansen, A.S., Yu, T., MarieNelly, H., McSwiggen, D.T., Kokic, G., Dailey, G.M., Cramer, P., et al., 2018. RNA polymerase Ⅱ clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833-840.
|
Boeynaems, S., Alberti, S., Fawzi, N.L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., et al., 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420-435.
|
Boija, A., Klein, I.A., Sabari, B.R., Dall’Agnese, A., Coffey, E.L., Zamudio, A.V., Li, C.H., Shrinivas, K., Manteiga, J.C., Hannett, N.M., et al., 2018. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842-1855.
|
Braun, J.E., Huntzinger, E., Izaurralde, E., 2013. The role of GW182 proteins in miRNA-mediated gene silencing. Adv. Exp. Med. Biol. 768, 147-163.
|
Cai, D., Feliciano, D., Dong, P., Flores, E., Gruebele, M., Porat-Shliom, N., Sukenik, S., Liu, Z., Lippincott-Schwartz, J., 2019. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578-1589.
|
Cerase, A., Armaos, A., Neumayer, C., Avner, P., Guttman, M., Tartaglia, G.G., 2019. Phase separation drives X-chromosome inactivation: a hypothesis. Nat. Struct. Mol. Biol. 26, 331-334.
|
Cerase, A., Smeets, D., Tang, Y.A., Gdula, M., Kraus, F., Spivakov, M., Moindrot, B., Leleu, M., Tattermusch, A., Demmerle, J., et al., 2014. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc. Natl. Acad. Sci. U. S. A. 111, 2235-2240.
|
Chen, X., Wei, M., Zheng, M.M., Zhao, J., Hao, H., Chang, L., Xi, P., Sun, Y., 2016. Study of RNA polymerase Ⅱ clustering inside live-cell nuclei using bayesian nanoscopy. ACS Nano 10, 2447-2454.
|
Cho, W.K., Spille, J.H., Hecht, M., Lee, C., Li, C., Grube, V., Cisse Ⅱ, 2018. Mediator and RNA polymerase Ⅱ clusters associate in transcription-dependent condensates. Science 361, 412-415.
|
Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G.M., Cattoglio, C., Heckert, A., Banala, S., Lavis, L., Darzacq, X., et al., 2018. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555.
|
Cisse Ⅱ, Izeddin, I., Causse, S.Z., Boudarene, L., Senecal, A., Muresan, L., DugastDarzacq, C., Hajj, B., Dahan, M., Darzacq, X., 2013. Real-time dynamics of RNA polymerase Ⅱ clustering in live human cells. Science 341, 664-667.
|
Conicella, A.E., Zerze, G.H., Mittal, J., Fawzi, N.L., 2016. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537-1549.
|
Core, L., Adelman, K., 2019. Promoter-proximal pausing of RNA polymerase Ⅱ: a nexus of gene regulation. Genes Dev. 33, 960-982.
|
Cramer, P., 2019. Organization and regulation of gene transcription. Nature 573, 45-54.
|
Decker, C.J., Parker, R., 2012. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4, a012286.
|
Dias, A.P., Dufu, K., Lei, H., Reed, R., 2010. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat. Commun. 1, 97.
|
Ding, D.Q., Okamasa, K., Katou, Y., Oya, E., Nakayama, J.I., Chikashige, Y., Shirahige, K., Haraguchi, T., Hiraoka, Y., 2019. Chromosome-associated RNAprotein complexes promote pairing of homologous chromosomes during meiosis in Schizosaccharomyces pombe. Nat. Commun. 10, 5598.
|
Ding, D.Q., Okamasa, K., Yamane, M., Tsutsumi, C., Haraguchi, T., Yamamoto, M., Hiraoka, Y., 2012. Meiosis-specific noncoding RNA mediates robust pairing of homologous chromosomes in meiosis. Science 336, 732-736.
|
Drino, A., Schaefer, M.R., 2018. RNAs, phase separation, and membrane-less organelles: are post-transcriptional modifications modulating organelle dynamics? Bioessays 40, e1800085.
|
Dumbovic, G., Biayna, J., Banus, J., Samuelsson, J., Roth, A., Diederichs, S., Alonso, S., Buschbeck, M., Perucho, M., Forcales, S.V., 2018. A novel long noncoding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res. 46, 5504-5524.
|
Duronio, R.J., Marzluff, W.F., 2017. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biol. 14, 726-738.
|
Etibor, T.A., Yamauchi, Y., Amorim, M.J., 2021. Liquid biomolecular condensates and viral lifecycles: review and perspectives. Viruses 13, 366.
|
Fang, X., Wang, L., Ishikawa, R., Li, Y., Fiedler, M., Liu, F., Calder, G., Rowan, B., Weigel, D., Li, P., et al., 2019. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature 569, 265-269.
|
Fang, Y., Spector, D.L., 2007. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818-823.
|
Fang, X., Wu, Z., Raitskin, O., Webb, K., Voigt, P., Lu, T., Howard, M., Dean, C., 2020. The 30 processing of antisense RNAs physically links to chromatin-based transcriptional control. Proc. Natl. Acad. Sci. U. S. A. 117, 15316-15321.
|
Fox, A.H., Lamond, A.I., 2010. Paraspeckles. Cold Spring Harb. Perspect. Biol. 2, a000687.
|
Fu, Y., Zhuang, X., 2020. m6A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16, 955-963.
|
Gaglia, G., Rashid, R., Yapp, C., Joshi, G.N., Li, C.G., Lindquist, S.L., Sarosiek, K.A., Whitesell, L., Sorger, P.K., Santagata, S., 2020. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat. Cell Biol. 22, 151-158.
|
Gao, Y., Pei, G., Li, D., Li, R., Shao, Y., Zhang, Q.C., Li, P., 2019. Multivalent m6A motifs promote phase separation of YTHDF proteins. Cell Res. 29, 767-769.
|
Guillén-Boixet, J., Kopach, A., Holehouse, A.S., Wittmann, S., Jahnel, M., Schlüßler, R., Kim, K., Trussina, I.R.E.A., Wang, J., Mateju, D., et al., 2020. RNAinduced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346-361.
|
Guo, C., Che, Z., Yue, J., Xie, P., Hao, S., Xie, W., Luo, Z., Lin, C., 2020. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. Sci. Adv. 6, eaay4858.
|
Guo, J., Wei, L., Chen, S.S., Cai, X.W., Su, Y.N., Li, L., Chen, S., He, X.J., 2021. The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis. J. Integr. Plant Biol. 63, 755-771.
|
Guo, Y.E., Manteiga, J.C., Henninger, J.E., Sabari, B.R., Dall’Agnese, A., Hannett, N.M., Spille, J.-H., Afeyan, L.K., Zamudio, A.V., Shrinivas, K., et al., 2019. Pol Ⅱ phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543-548.
|
Henninger, J.E., Oksuz, O., Shrinivas, K., Sagi, I., LeRoy, G., Zheng, M.M., Andrews, J.O., Zamudio, A.V., Lazaris, C., Hannett, N.M., et al., 2020. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207-225.
|
Hnisz, D., Shrinivas, K., Young, R.A., Chakraborty, A.K., Sharp, P.A., 2017. A phase separation model for transcriptional control. Cell 169, 13-23.
|
Holoch, D., Moazed, D., 2015. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71-84.
|
Hubstenberger, A., Courel, M., Benard, M., Souquere, S., Ernoult-Lange, M., Chouaib, R., Yi, Z., Morlot, J.B., Munier, A., Fradet, M., et al., 2017. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68, 144-157.
|
Hurr, L., 2020. CDK-regulated phase separation seeded by histone genes ensures precise growth and function of histone locus bodies. Dev. Cell 54, 379-394.
|
Iserman, C., Desroches Altamirano, C., Jegers, C., Friedrich, U., Zarin, T., Fritsch, A.W., Mittasch, M., Domingues, A., Hersemann, L., Jahnel, M., et al., 2020a. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818-831.
|
Iserman, C., Roden, C.A., Boerneke, M.A., Sealfon, R.S.G., McLaughlin, G.A., Jungreis, I., Fritch, E.J., Hou, Y.J., Ekena, J., Weidmann, C.A., et al., 2020b. Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Mol. Cell 80, 1078-1091.e1076.
|
Ishidate, T., Ozturk, A.R., Durning, D.J., Sharma, R., Shen, E.Z., Chen, H., Seth, M., Shirayama, M., Mello, C.C., 2018. ZNFX-1 functions within perinuclear nuage to balance epigenetic signals. Mol. Cell. 70, 639-649.
|
Ivanov, P., Kedersha, N., Anderson, P., 2019. Stress granules and processing bodies in translational control. Cold Spring Harb. Perspect. Biol. 11, a032813.
|
Jain, A., Vale, R.D., 2017. RNA phase transitions in repeat expansion disorders. Nature 546, 243-247.
|
Jiang, L., Shao, C., Wu, Q.J., Chen, G., Zhou, J., Yang, B., Li, H., Gou, L.T., Zhang, Y., Wang, Y., et al., 2017. NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nat. Struct. Mol. Biol. 24, 816-824.
|
Jolly, C., Usson, Y., Morimoto, R.I., 1999. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc. Natl. Acad. Sci. U. S. A. 96, 6769-6774.
|
Kedersha, N., Panas, M.D., Achorn, C.A., Lyons, S., Tisdale, S., Hickman, T., Thomas, M., Lieberman, J., McInerney, G.M., Ivanov, P., et al., 2016. G3BPCaprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212, 845-860.
|
Khong, A., Matheny, T., Jain, S., Mitchell, S.F., Wheeler, J.R., Parker, R., 2017. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808-820.
|
Kim, E.Y., Wang, L., Lei, Z., Li, H., Fan, W., Cho, J., 2021. Ribosome stalling and SGS3 phase separation prime the epigenetic silencing of transposons. Native Plants 7, 303-309.
|
Kimball, S.R., Horetsky, R.L., Ron, D., Jefferson, L.S., Harding, H.P., 2003. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 284, C273-C284.
|
Kroschwald, S., Maharana, S., Simon, A., 2017. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters. https://doi.org/10.19185/MATTERS.201702000010.
|
Kumakura, N., Takeda, A., Fujioka, Y., Motose, H., Takano, R., Watanabe, Y., 2009. SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies. FEBS Lett. 583, 1261-1266.
|
Kwon, I., Kato, M., Xiang, S., Wu, L., Theodoropoulos, P., Mirzaei, H., Han, T., Xie, S., Corden, J.L., McKnight, S.L., 2013. Phosphorylation-regulated binding of RNA polymerase Ⅱ to fibrous polymers of low-complexity domains. Cell 155, 1049-1060.
|
Lafontaine, D.L.J., Riback, J.A., Bascetin, R., Brangwynne, C.P., 2020. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165-182.
|
Langdon, E.M., Gladfelter, A.S., 2018. A new lens for RNA localization: liquid-liquid phase separation. Annu. Rev. Microbiol. 72, 255-271.
|
Langdon, E.M., Qiu, Y., Ghanbari Niaki, A., McLaughlin, G.A., Weidmann, C.A., Gerbich, T.M., Smith, J.A., Crutchley, J.M., Termini, C.M., Weeks, K.M., et al., 2018. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922-927.
|
Li, P., Banjade, S., Cheng, H.C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V., King, D.S., Banani, S.F., et al., 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340.
|
Li, W., Hu, J., Shi, B., Palomba, F., Digman, M.A., Gratton, E., Jiang, H., 2020. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960-972.
|
Liao, S.E., Regev, O., 2020. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res. 49, 636-645.
|
Lin, Y., Zhou, X., Kato, M., Liu, D., Ghaemmaghami, S., Tu, B.P., McKnight, S.L., 2020. Redox-mediated regulation of an evolutionarily conserved cross-beta structure formed by the TDP43 low complexity domain. Proc. Natl. Acad. Sci. U. S. A. 117, 28727-28734.
|
Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., Pan, T., 2015. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560-564.
|
Loda, A., Heard, E., 2019. Xist RNA in action: past, present, and future. PLoS Genet. 15, e1008333.
|
Loke, J.C., Stahlberg, E.A., Strenski, D.G., Haas, B.J., Wood, P.C., Li, Q.Q., 2005. Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol. 138, 1457-1468.
|
Lu, F., Portz, B., Gilmour, D.S., 2019. The C-terminal domain of RNA polymerase Ⅱ is a multivalent targeting sequence that supports Drosophila development with only consensus heptads. Mol. Cell 73, 1232-1242.
|
Lu, H., Yu, D., Hansen, A.S., Ganguly, S., Liu, R., Heckert, A., Darzacq, X., Zhou, Q., 2018. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase Ⅱ. Nature 558, 318-323.
|
Lu, Y., Wu, T., Gutman, O., Lu, H., Zhou, Q., Henis, Y.I., Luo, K., 2020. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453-464.
|
Luo, Y., Na, Z., Slavoff, S.A., 2018. P-bodies: composition, properties, and functions. Biochemistry 57, 2424-2431.
|
Ma, W., Mayr, C., 2018. A membraneless organelle associated with the endoplasmic reticulum enables 30UTR-mediated protein-protein interactions. Cell 175, 1492-1506.
|
Ma, W., Zheng, G., Xie, W., Mayr, C., 2021. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates. Elife 10, e64252.
|
Mallik, M., Lakhotia, S.C., 2009. RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol. 6, 464-478.
|
Mateju, D., Eichenberger, B., Voigt, F., Eglinger, J., Roth, G., Chao, J.A., 2020. Singlemolecule imaging reveals translation of mRNAs localized to stress granules. Cell 183, 1801-1812.
|
Metz, A., Soret, J., Vourc’h, C., Tazi, J., Jolly, C., 2004. A key role for stress-induced satellite Ⅲ transcripts in the relocalization of splicing factors into nuclear stress granules. J. Cell Sci. 117, 4551-4558.
|
Moindrot, B., Brockdorff, N., 2016. RNA binding proteins implicated in Xist-mediated chromosome silencing. Semin. Cell Dev. Biol. 56, 58-70.
|
Murray, D.T., Kato, M., Lin, Y., Thurber, K.R., Hung, I., McKnight, S.L., Tycko, R., 2017. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615-627.
|
Ninomiya, K., Adachi, S., Natsume, T., Iwakiri, J., Terai, G., Asai, K., Hirose, T., 2020. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39, e102729.
|
Pandya-Jones, A., Markaki, Y., Serizay, J., Chitiashvili, T., Mancia Leon, W.R., Damianov, A., Chronis, C., Papp, B., Chen, C.K., McKee, R., et al., 2020. A protein assembly mediates Xist localization and gene silencing. Nature 587, 145-151.
|
Phillips, C.M., Montgomery, T.A., Breen, P.C., Ruvkun, G., 2012. MUT-16 promotes formation of perinuclear mutator foci required for RNA silencing in the C. elegans germline. Genes Dev. 26, 1433-1444.
|
Rawat, P., Boehning, M., Hummel, B., Aprile-Garcia, F., Pandit, A.S., Eisenhardt, N., Khavaran, A., Niskanen, E., Vos, S.M., Palvimo, J.J., et al., 2021. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Mol. Cell 81, 1013-1026.
|
Riback, J.A., Zhu, L., Ferrolino, M.C., Tolbert, M., Mitrea, D.M., Sanders, D.W., Wei, M.-T., Kriwacki, R.W., Brangwynne, C.P., 2020. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209-214.
|
Ries, R.J., Zaccara, S., Klein, P., Olarerin-George, A., Namkoong, S., Pickering, B.F., Patil, D.P., Kwak, H., Lee, J.H., Jaffrey, S.R., 2019. m6A enhances the phase separation potential of mRNA. Nature 571, 424-428.
|
Rosa, S., Duncan, S., Dean, C., 2016. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 7, 13031.
|
Sabari, B.R., Dall’Agnese, A., Boija, A., Klein, I.A., Coffey, E.L., Shrinivas, K., Abraham, B.J., Hannett, N.M., Zamudio, A.V., Manteiga, J.C., et al., 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958.
|
Sanders, D.W., Kedersha, N., Lee, D.S.W., Strom, A.R., Drake, V., Riback, J.A., Bracha, D., Eeftens, J.M., Iwanicki, A., Wang, A., et al., 2020. Competing proteinRNA interaction networks control multiphase intracellular organization. Cell 181, 306-324.
|
Savastano, A., Ibanez de Opakua, A., Rankovic, M., Zweckstetter, M., 2020. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerasecontaining condensates. Nat. Commun. 11, 6041.
|
Schmidt, H.B., Barreau, A., Rohatgi, R., 2019. Phase separation-deficient TDP43 remains functional in splicing. Nat. Commun. 10, 4890.
|
Schutz, S., Noldeke, E.R., Sprangers, R., 2017. A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping. Nucleic Acids Res. 45, 6911-6922.
|
Sheth, U., Parker, R., 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808.
|
Sheu-Gruttadauria, J., MacRae, I.J., 2018. Phase transitions in the assembly and function of human miRISC. Cell 173, 946-957.
|
Shin, Y., Brangwynne, C.P., 2017. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382.
|
Shrinivas, K., Sabari, B.R., Coffey, E.L., Klein, I.A., Boija, A., Zamudio, A.V., Schuijers, J., Hannett, N.M., Sharp, P.A., Young, R.A., et al., 2019. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549-561.
|
Smeets, D., Markaki, Y., Schmid, V.J., Kraus, F., Tattermusch, A., Cerase, A., Sterr, M., Fiedler, S., Demmerle, J., Popken, J., et al., 2014. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenet. Chromatin 7, 8.
|
Song, X., Li, Y., Cao, X., Qi, Y., 2019. MicroRNAs and their regulatory roles in plantenvironment interactions. Annu. Rev. Plant Biol. 70, 489-525.
|
Song, P., Yang, J., Wang, C., Lu, Q., Shi, L., Tayier, S., Jia, G., 2021. Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. Mol. Plant 14, 571-587.
|
Su, J.M., Wilson, M.Z., Samuel, C.E., Ma, D., 2021. Formation and function of liquid-like viral factories in negative-sense single-stranded RNA virus infections. Viruses 13, 126.
|
Uebel, C.J., Anderson, D.C., Mandarino, L.M., Manage, K.I., Aynaszyan, S., Phillips, C.M., 2018. Distinct regions of the intrinsically disordered protein MUT-16 mediate assembly of a small RNA amplification complex and promote phase separation of Mutator foci. PLoS Genet. 14, e1007542.
|
Wan, G., Fields, B.D., Spracklin, G., Shukla, A., Phillips, C.M., Kennedy, S., 2018. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557, 679-683.
|
Wang, A., Conicella, A.E., Schmidt, H.B., Martin, E.W., Rhoads, S.N., Reeb, A.N., Nourse, A., Ramirez Montero, D., Ryan, V.H., Rohatgi, R., et al., 2018a. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J. 37, e97452.
|
Wang, J., Shi, C., Xu, Q., Yin, H., 2021a. SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation into stress granules through its N-terminal intrinsically disordered region. Cell Discov 7, 5.
|
Wang, J., Wang, L., Diao, J., Shi, Y.G., Shi, Y., Ma, H., Shen, H., 2020. Binding to m6A RNA promotes YTHDF2-mediated phase separation. Protein Cell 11, 304-307.
|
Wang, J., Yu, H., Ma, Q., Zeng, P., Wu, D., Hou, Y., Liu, X., Jia, L., Sun, J., Chen, Y., et al., 2021b. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell 28, 1-16.
|
Wang, Y., Hu, S.B., Wang, M.R., Yao, R.W., Wu, D., Yang, L., Chen, L.L., 2018b. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat. Cell Biol. 20, 1145-1158.
|
Wu, Z., Fang, X., Zhu, D., Dean, C., 2020. Autonomous pathway: FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism. Plant Physiol. 182, 27-37.
|
Xiang, S., Kato, M., Wu, L.C., Lin, Y., Ding, M., Zhang, Y., Yu, Y., McKnight, S.L., 2015. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829-839.
|
Xie, D., Chen, M., Niu, J., Wang, L., Li, Y., Fang, X., Li, P., Qi, Y., 2020. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat. Cell Biol. 23, 32-39.
|
Xing, Y.H., Yao, R.W., Zhang, Y., Guo, C.J., Jiang, S., Xu, G., Dong, R., Yang, L., Chen, L.L., 2017. SLERT regulates DDX21 rings associated with Pol I transcription. Cell 169, 664-678.
|
Yamazaki, T., Hirose, T., 2015. The building process of the functional paraspeckle with long non-coding RNAs. Front. Biosci. 7, 1-41.
|
Yamazaki, T., Nakagawa, S., Hirose, T., 2019. Architectural RNAs for membraneless nuclear body formation. Cold Spring Harbor Symp. Quant. Biol. 84, 227-237.
|
Yamazaki, T., Souquere, S., Chujo, T., Kobelke, S., Chong, Y.S., Fox, A.H., Bond, C.S., Nakagawa, S., Pierron, G., Hirose, T., 2018. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038-1053.
|
Yang, P., Mathieu, C., Kolaitis, R.-M., Zhang, P., Messing, J., Yurtsever, U., Yang, Z., Wu, J., Li, Y., Pan, Q., et al., 2020. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325-345.
|
Yao, R.W., Xu, G., Wang, Y., Shan, L., Luan, P.F., Wang, Y., Wu, M., Yang, L.Z., Xing, Y.H., Yang, L., et al., 2019. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76, 767-783.
|
Yap, K., Mukhina, S., Zhang, G., Tan, J.S.C., Ong, H.S., Makeyev, E.V., 2018. A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol. Cell 72, 525-540.
|
Zhang, Y., Yang, M., Duncan, S., Yang, X., Abdelhamid, M.A.S., Huang, L., Zhang, H., Benfey, P.N., Waller, Z.A.E., Ding, Y., 2019. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 47, 11746-11754.
|
Zhao, D., Xu, W., Zhang, X., Wang, X., Ge, Y., Yuan, E., Xiong, Y., Wu, S., Li, S., Wu, N., et al., 2021. Understanding the phase separation characteristics of nucleocapsid protein provides a new therapeutic opportunity against SARS-CoV-2. Protein Cell 12, 734-740.
|
Zuo, L., Zhang, G., Massett, M., Cheng, J., Guo, Z., Wang, L., Gao, Y., Li, R., Huang, X., Li, P., et al., 2021. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nat. Commun. 12, 1491.
|