Andrews, S., 2010. FastQC:a quality control tool for high throughput sequence data. Babraham Bioinformatics. Babraham Institute, Cambridge, United Kingdom.
|
Carpentier, M.-C., Manfroi, E., Wei, F.-J., Wu, H.-P., Lasserre, E., Llauro, C., Debladis, E., Akakpo, R., Hsing, Y.-I., Panaud, O., 2019. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat. Commun. 10, 1-12.
|
Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., Voytas, D.F., 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82.
|
Cheng, W.-H., Taliercio, E.W., Chourey, P.S., 1999. Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incw1) through its 30' untranslated region in a cell suspension culture of maize. Proc. Natl. Acad. Sci. U. S. A. 96, 10512-10517.
|
Chin, H.G., Choe, M.S., Lee, S.H., Park, S.H., Park, S.H., Koo, J.C., Kim, N.Y., Lee, J.J., Oh, B.G., Yi, G.H., 1999. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19, 615-623.
|
Cowperthwaite, M., Park, W., Xu, Z., Yan, X., Maurais, S.C., Dooner, H.K., 2002. Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14, 713-726.
|
Doebley, J., Stec, A., Gustus, C., 1995. Teosinte branched1 and the origin of maize:evidence for epistasis and the evolution of dominance. Genetics 141, 333-346.
|
Doebley, J., Stec, A., Hubbard, L., 1997. The evolution of apical dominance in maize. Nature 386, 485-488.
|
Du, C., Hoffman, A., He, L., Caronna, J., Dooner, H.K., 2011. The complete Ac/Ds transposon family of maize. BMC Genom. 12, 1-12.
|
Fujimoto, S., Matsunaga, S., Murata, M., 2016. Mapping of T-DNA and Ac/Ds by TAIL-PCR to analyze chromosomal rearrangements. In:Murata, M. (Ed.), Chromosome and Genomic Engineering in Plants. Springer, NewYork, pp. 207-216.
|
Ito, T., Motohashi, R., Kuromori, T., Noutoshi, Y., Seki, M., Kamiya, A., Mizukado, S., Sakurai, T., Shinozaki, K., 2005. A resource of 5,814 dissociation transposontagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5. Plant Cell Physiol. 46, 1149-1153.
|
Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT:a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360.
|
Kolesnik, T., Szeverenyi, I., Bachmann, D., Kumar, C.S., Jiang, S., Ramamoorthy, R., Cai, M., Ma, Z.G., Sundaresan, V., Ramachandran, S., 2004. Establishing an efficient Ac/Ds tagging system in rice, large-scale analysis of Ds flanking sequences. Plant J. 37, 301-314.
|
Kunze, R., Weil, C.F., 2002. The hAT and CACTA superfamilies of plant transposons. In:Mobile DNA II. American Society for Microbiology (ASM), pp. 565-610.
|
Kuromori, T., Hirayama, T., Kiyosue, Y., Takabe, H., Mizukado, S., Sakurai, T., Akiyama, K., Kamiya, A., Ito, T., Shinozaki, K., 2004. A collection of 11800 singlecopy Ds transposon insertion lines in Arabidopsis. Plant J. 37, 897-905.
|
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
|
Levin, H.L., Moran, J.V., 2011. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12, 615-627.
|
Li, G.T., Jain, R., Chern, M., Pham, N.T., Martin, J.A., Wei, T., Schackwitz, W.S., Lipzen, A.M., Duong, P.Q., Jones, K.C., et al., 2017. The sequences of 1504 mutants in the model rice variety kitaake facilitate rapid functional genomic studies. Plant Cell 29, 1218-1231.
|
Li, X., Song, Y., Century, K., Straight, S., Ronald, P., Dong, X., Lassner, M., Zhang, Y., 2001. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J. 27, 235-242.
|
Liang, L., Zhou, L., Tang, Y., Li, N., Song, T., Shao, W., Zhang, Z., Cai, P., Feng, F., Ma, Y., et al., 2019. A sequence-indexed Mutator insertional library for maize functional genomics study. Plant Physiol. 181, 1404-1414.
|
Liao, G.-C., Rehm, E.J., Rubin, G.M., 2000. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 97, 3347-3351.
|
Liu, S., Yeh, C.-T., Ji, T., Ying, K., Wu, H., Tang, H.M., Fu, Y., Nettleton, D., Schnable, P.S., 2009. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet. 5, e1000733.
|
Loveless, A., 1958. Increased rate of plaque-type and host-range mutation following treatment of bacteriophage in vitro with ethyl methane sulphonate. Nature 181, 1212-1213.
|
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., 2013. RNA-guided human genome engineering via Cas9. Science 339, 823-826.
|
Mansfeld, B.N., Grumet, R., 2018. QTLseqr:an R package for bulk segregant analysis with next-generation sequencing. Plant Genome 11, 180006.
|
Marcon, C., Altrogge, L., Win, Y.N., Stoecker, T., Gardiner, J.M., Portwood, J.L., II, Opitz, N., Kortz, A., Baldauf, J.A., Hunter, C.T., et al., 2020. BonnMu:a sequenceindexed resource of transposon-induced maize mutations for functional genomics studies. Plant Physiol. 184, 620-631.
|
McCarty, D.R., Latshaw, S., Wu, S., Suzuki, M., Hunter, C.T., Avigne, W.T., Koch, K.E., 2013. Mu-seq:sequence-based mapping and identification of transposon induced mutations. PLoS One 8, e77172.
|
McCarty, D.R., Mark Settles, A., Suzuki, M., Tan, B.C., Latshaw, S., Porch, T., Robin, K., Baier, J., Avigne, W., Lai, J., et al., 2005. Steady-state transposon mutagenesis in inbred maize. Plant J. 44, 52-61.
|
McClintock, B., 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16, 13-47.
|
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., 2010. The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
|
Miyao, A., Iwasaki, Y., Kitano, H., Itoh, J.-I., Maekawa, M., Murata, K., Yatou, O., Nagato, Y., Hirochika, H., 2007. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol. Biol. 63, 625-635.
|
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T., Salzberg, S.L., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295.
|
Piffanelli, P., Droc, G., Mieulet, D., Lanau, N., Bès, M., Bourgeois, E., Rouvière, C., Gavory, F., Cruaud, C., Ghesquière, A., 2007. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol. Biol. 65, 587-601.
|
Sabot, F., 2014. Tos17 rice element:incomplete but effective. Mobile DNA 5, 1-4.
|
Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., Yanofsky, M.F., 1993. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5, 729-737.
|
Stanford, W.L., Cohn, J.B., Cordes, S.P., 2001. Gene-trap mutagenesis:past, present and beyond. Nat. Rev. Genet. 2, 756-768.
|
Tang, G.-Q., Lüscher, M., Sturm, A., 1999. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11, 177-189.
|
Uren, A.G., Mikkers, H., Kool, J., Van Der Weyden, L., Lund, A.H., Wilson, C.H., Rance, R., Jonkers, J., Van Lohuizen, M., Berns, A., 2009. A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat. Protoc. 4, 789-798.
|
Vollbrecht, E., Duvick, J., Schares, J.P., Ahern, K.R., Deewatthanawong, P., Xu, L., Conrad, L.J., Kikuchi, K., Kubinec, T.A., Hall, B.D., 2010. Genome-wide distribution of transposed Dissociation elements in maize. Plant Cell 22, 1667-1685.
|
Wang, D., Peterson, T., 2013. Isolation of sequences flanking Ac insertion sites by Ac casting. In:Peterson, T. (Ed.), Plant Transposable Elements. Springer, New York, pp. 117-122.
|
Wang, Q., Dooner, H.K., 2006. Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc. Natl. Acad. Sci. U. S. A. 103, 17644-17649.
|
Williams-Carrier, R., Stiffler, N., Belcher, S., Kroeger, T., Stern, D.B., Monde, R.A., Coalter, R., Barkan, A., 2010. Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J. 63, 167-177.
|
Xiong, W., He, L., Li, Y., Dooner, H.K., Du, C., 2013. InsertionMapper:a pipeline tool for the identification of targeted sequences from multidimensional high throughput sequencing data. BMC Genom. 14, 1-7.
|
Yadav, N., Postle, K., Saiki, R., Thomashow, M., Chilton, M.-D., 1980. T-DNA of a crown gall teratoma is covalently joined to host plant DNA. Nature 287, 458-461.
|
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., Meyerowitz, E.M., 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35-39.
|
Zhang, J., Yu, C., Pulletikurti, V., Lamb, J., Danilova, T., Weber, D.F., Birchler, J., Peterson, T., 2009. Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev. 23, 755-765.
|