The identification and application of the Von Hippel-Lindau (VHL) gene is a seminal breakthrough in kidney cancer research. VHL and its protein pVHL are the root cause of most kidney cancers, and the cascading pathway below them is crucial for understanding hypoxia, in addition to the aforementioned tumorigenesis routes and treatments. We reviewed the history and functions of VHL/pVHL and Hypoxia-inducible factor (HIF), their well-known activities under low-oxygen environments as an E3 ubiquitin ligase and as a transcription factor, respectively, as well as their non-canonical functions revealed recently. Additionally, we discussed how their dysregulation promotes tumorigenesis: beginning with chromosome 3 p-arm (3p) loss/epigenetic methylation, followed by two-allele knockout, before the loss of complimentary tumor suppressor genes leads cells down predictable oncological paths. These different pathways can ultimately determine the grade, outcome, and severity of the deadliest genitourinary cancer. We finished by investigating current and proposed schemes to therapeutically treat clear cell renal cell carcinoma (ccRCC) by manipulating the hypoxic pathway utilizing Vascular Endothelial Growth Factor (VEGF) inhibitors, mammalian target of rapamycin complex 1 (mTORC1) inhibitors, small molecule HIF inhibitors, immune checkpoint blockade therapy, and synthetic lethality.
American Cancer Society, 2020. Cancer Facts & Figures 2020. Bobbin, M.L., Rossi, J.J., 2016. RNA interference (RNAi)-based therapeutics:delivering on the promise? Annu. Rev. Pharmacol. Toxicol. 56, 103-122.
|
Bommi-Reddy, A., Almeciga, I., Sawyer, J., Geisen, C., Li, W., Harlow, E., Kaelin, W.G., Grueneberg, D.A., 2008. Kinase requirements in human cells:Ⅲ. Altered kinase requirements in VHL-/- cancer cells detected in a pilot synthetic lethal screen. Proc. Natl. Acad. Sci. U. S. A. 105, 16484-16489.
|
Casciello, F., Al-Ejeh, F., Kelly, G., Brennan, D.J., Ngiow, S.F., Young, A., Stoll, T., Windloch, K., Hill, M.M., Smyth, M.J., 2017. G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 114, 7077-7082.
|
Chabanon, R.M., Morel, D., Eychenne, T., Colmet-Daage, L., Bajrami, I., Dorvault, N., Garrido, M., Meisenberg, C., Lamb, A., Ngo, C., 2021. PBRM1 deficiency confers synthetic lethality to DNA repair inhibitors in cancer. Cancer Res. 81, 2888-2902.
|
Chakraborty, A.A., Nakamura, E., Qi, J., Creech, A., Jaffe, J.D., Paulk, J., Novak, J.S., Nagulapalli, K., McBrayer, S.K., Cowley, G.S., 2017. HIF activation causes synthetic lethality between the VHL tumor suppressor and the EZH1 histone methyltransferase. Sci. Transl. Med. 9, eaal5272.
|
Chan, D.A., Sutphin, P.D., Nguyen, P., Turcotte, S., Lai, E.W., Banh, A., Reynolds, G.E., Chi, J.-T., Wu, J., Solow-Cordero, D.E., 2011. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3, 94ra70.
|
Chen, W., Hill, H., Christie, A., Kim, M.S., Holloman, E., Pavia-Jimenez, A., Homayoun, F., Ma, Y., Patel, N., Yell, P., 2016a. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112-117.
|
Chen, J., Liu, F., Li, H., Archacki, S., Gao, M., Liu, Y., Liao, S., Huang, M., Wang, J., Yu, S., 2015. pVHL interacts with Ceramide kinase like (CERKL) protein and ubiquitinates it for oxygen dependent proteasomal degradation. Cellular signaling 27, 2314-2323.
|
Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q., He, J., 2016b. Cancer statistics in China, 2015. CA. A. Cancer J. Clin. 66, 115-132.
|
Choueiri, T.K., Halabi, S., Sanford, B.L., Hahn, O., Michaelson, M.D., Walsh, M.K., Feldman, D.R., Olencki, T., Picus, J., Small, E.J., 2017. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk:the alliance A031203 CABOSUN trial. J. Clin. Oncol. 35, 591.
|
Choueiri, T.K., Motzer, R.J., 2017. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 376, 354-366.
|
Choueiri, T.K., Escudier, B., Powles, T., Tannir, N.M., Mainwaring, P.N., Rini, B.I., Hammers, H.J., Donskov, F., Roth, B.J., Peltola, K., 2016. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR):final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 17, 917-927.
|
Choueiri, T.K., Motzer, R.J., Rini, B.I., Haanen, J., Campbell, M., Venugopal, B., Kollmannsberger, C., Gravis-Mescam, G., Uemura, M., Lee, J., 2020a. Updated efficacy results from the JAVELIN Renal 101 trial:first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann. Oncol. 31, 1030-1039.
|
Choueiri, T.K., Plimack, E.R., Bauer, T.M., Merchan, J.R., Papadopoulos, K.P., McDermott, D.F., Michaelson, M.D., Appleman, L.J., Thamake, S., Zojwalla, N.J., 2020b. Phase I/Ⅱ study of the oral HIF-2 a inhibitor MK-6482 in patients with advanced clear cell renal cell carcinoma (RCC). Am. Soc. Clin. Oncol. 38, 611.
|
Choueiri, T.K., Powles, T., Burotto, M., Escudier, B., Bourlon, M.T., Zurawski, B., Oyervides Juárez, V.M., Hsieh, J.J., Basso, U., Shah, A.Y., 2021. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829-841.
|
Courtney, K.D., Infante, J.R., Lam, E.T., Figlin, R.A., Rini, B.I., Brugarolas, J., Zojwalla, N.J., Lowe, A.M., Wang, K., Wallace, E.M., 2018. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867-874.
|
Courtney, K.D., Ma, Y., de Leon, A.D., Christie, A., Xie, Z., Woolford, L., Singla, N., Joyce, A., Hill, H., Madhuranthakam, A.J., 2020. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin. Canc. Res. 26, 793-803.
|
Crossey, P.A., Foster, K., Richards, F.M., Phipps, M.E., Latif, F., Tory, K., Jones, M.H., Bentley, E., Kumar, R., Lerman, M.I., 1994. Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease:analysis of allele loss in VHL tumours. Hum. Genet. 93, 53-58.
|
Dalgliesh, G.L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., Davies, H., Edkins, S., Hardy, C., Latimer, C., 2010. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360-363.
|
Elias, R., Zhang, Q., Brugarolas, J., 2020. The von Hippel-Lindau tumor suppressor gene:implications and therapeutic opportunities. Cancer J. 26, 390-398.
|
Escudier, B., Eisen, T., Stadler, W.M., Szczylik, C., Oudard, S., Siebels, M., Negrier, S., Chevreau, C., Solska, E., Desai, A.A., 2007. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125-134.
|
Feldman, D.R., Baum, M.S., Ginsberg, M.S., Hassoun, H., Flombaum, C.D., Velasco, S., Fischer, P., Ronnen, E., Ishill, N., Patil, S., 2009. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 1432.
|
Flaherty, K.T., Manola, J.B., Pins, M., McDermott, D.F., Atkins, M.B., Dutcher, J.J., George, D.J., Margolin, K.A., DiPaola, R.S., 2015. Best:a randomized phase ii study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinomada trial of the ECOGeACRIN cancer research group (E2804). J. Clin. Oncol. 33, 2384.
|
Gu, Y.-F., Cohn, S., Christie, A., McKenzie, T., Wolff, N., Do, Q.N., Madhuranthakam, A.J., Pedrosa, I., Wang, T., Dey, A., 2017. Modeling renal cell carcinoma in mice:Bap1 and Pbrm1 inactivation drive tumor grade. Cancer Discov. 7, 900-917.
|
Guo, J., Chakraborty, A.A., Liu, P., Gan, W., Zheng, X., Inuzuka, H., Wang, B., Zhang, J., Zhang, L., Yuan, M., 2016. pVHL suppresses kinase activity of Akt in a proline-hydroxylationedependent manner. Science 353, 929-932.
|
Hara, S., Hamada, J., Kobayashi, C., Kondo, Y., Imura, N., 2001. Expression and characterization of hypoxia-inducible factor (HIF)-3α in human kidney:suppression of HIF-mediated gene expression by HIF-3α. Biochem. Biophys. Res. Commun. 287, 808-813.
|
Heir, P., Srikumar, T., Bikopoulos, G., Bunda, S., Poon, B.P., Lee, J.E., Raught, B., Ohh, M., 2016. Oxygen-dependent regulation of erythropoietin receptor turnover and signaling. J. Biol. Chem. 291, 7357-7372.
|
Hu, L., Xie, H., Liu, X., Potjewyd, F., James, L.I., Wilkerson, E.M., Herring, L.E., Xie, L., Chen, X., Cabrera, J.C., 2020. TBK1 is a synthetic lethal target in cancer with VHL loss. Cancer Discov. 10, 460-475.
|
Hudes, G., Carducci, M., Tomczak, P., Dutcher, J., Figlin, R., Kapoor, A., Staroslawska, E., Sosman, J., McDermott, D., Bodrogi, I., 2007. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271-2281.
|
Iliopoulos, O., Kibel, A., Gray, S., Kaelin, W.G., 1995. Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. 1, 822-826.
|
Jonasch, E., Donskov, F., Iliopoulos, O., Rathmell, W.K., Narayan, V., Maughan, B.L., Oudard, S., Else, T., Maranchie, J.K., Welsh, S.J., 2020. Phase Ⅱ study of the oral HIF-2α inhibitor MK-6482 for Von Hippel-Lindau diseaseeassociated renal cell carcinoma. Am. Soc. Clin. Oncol. 38, 5003.
|
Jubb, A., Pham, T., Hanby, A., Frantz, G., Peale, F., Wu, T., Koeppen, H., Hillan, K., 2004. Expression of vascular endothelial growth factor, hypoxia inducible factor 1α, and carbonic anhydrase IX in human tumours. J. Clin. Pathol. 57, 504-512.
|
Kaelin, W.G., 2002. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Canc. 2, 673-682.
|
Kapur, P., Peña-Llopis, S., Christie, A., Zhrebker, L., Pavía-Jiménez, A., Rathmell, W.K., Xie, X.-J., Brugarolas, J., 2013. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma:a retrospective analysis with independent validation. Lancet Oncol. 14, 159-167.
|
Kenneth, N.S., Rocha, S., 2008. Regulation of gene expression by hypoxia. Biochem. J. 414, 19-29.
|
Kucejova, B., Peña-Llopis, S., Yamasaki, T., Sivanand, S., Tran, T.A.T., Alexander, S., Wolff, N.C., Lotan, Y., Xie, X.-J., Kabbani, W., 2011. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol. Canc. Res. 9, 1255-1265.
|
Latif, F., Tory, K., Gnarra, J., Yao, M., Duh, F.-M., Orcutt, M.L., Stackhouse, T., Kuzmin, I., Modi, W., Geil, L., 1993. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317-1320.
|
Lee, D.C., Sohn, H.A., Park, Z.-Y., Oh, S., Kang, Y.K., Lee, K.-m., Kang, M., Jang, Y.J., Yang, S.-J., Hong, Y.K., 2015. A lactate-induced response to hypoxia. Cell 161, 595-609.
|
Liu, S., Cai, X., Wu, J., Cong, Q., Chen, X., Li, T., Du, F., Ren, J., Wu, Y.-T., Grishin, N.V., 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630.
|
Liu, X.-D., Kong, W., Peterson, C.B., McGrail, D.J., Hoang, A., Zhang, X., Lam, T., Pilie, P.G., Zhu, H., Beckermann, K.E., 2020a. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. Commun. 11, 1-14.
|
Liu, X., Simon, J.M., Xie, H., Hu, L., Wang, J., Zurlo, G., Fan, C., Ptacek, T.S., Herring, L., Tan, X., 2020b. Genome-wide screening identifies SFMBT1 as an oncogenic driver in cancer with VHL loss. Mol. Cell 77, 1294-1306. e1295.
|
Lonser, R.R., Glenn, G.M., Walther, M., Chew, E.Y., Libutti, S.K., Linehan, W.M., Oldfield, E.H., 2003. von Hippel-Lindau disease. Lancet 361, 2059-2067.
|
Maher, E., Yates, J., Harries, R., Benjamin, C., Harris, R., Moore, A., FergusonSmith, M., 1990. Clinical features and natural history of von Hippel-Lindau disease. QJM:Int. J. Med. 77, 1151-1163.
|
Miao, D., Margolis, C.A., Gao, W., Voss, M.H., Li, W., Martini, D.J., Norton, C., Bossé, D., Wankowicz, S.M., Cullen, D., 2018. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801-806.
|
Mitchell, T.J., Turajlic, S., Rowan, A., Nicol, D., Farmery, J.H., O'Brien, T., Martincorena, I., Tarpey, P., Angelopoulos, N., Yates, L.R., 2018. Timing the landmark events in the evolution of clear cell renal cell cancer:TRACERx renal. Cell 173, 611-623. e617.
|
Molina, A.M., Hutson, T.E., Larkin, J., Gold, A.M., Wood, K., Carter, D., Motzer, R., Michaelson, M.D., 2014. A phase 1b clinical trial of the multi-targeted tyrosine kinase inhibitor lenvatinib (E7080) in combination with everolimus for treatment of metastatic renal cell carcinoma (RCC). Canc. Chemother. Pharmacol. 73, 181-189.
|
Motzer, R.J., Escudier, B., McDermott, D.F., Frontera, O.A., Melichar, B., Powles, T., Donskov, F., Plimack, E.R., Barthélémy, P., Hammers, H.J., 2020. Survival outcomes and independent response assessment with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma:42-month follow-up of a randomized phase 3 clinical trial. J. Immunother. Cancer 8, e000891.
|
Motzer, R.J., Escudier, B., Oudard, S., Hutson, T.E., Porta, C., Bracarda, S., Grünwald, V., Thompson, J.A., Figlin, R.A., Hollaender, N., 2008. Efficacy of everolimus in advanced renal cell carcinoma:a double-blind, randomised, placebo-controlled phase Ⅲ trial. Lancet 372, 449-456.
|
Motzer, R.J., Escudier, B., Tomczak, P., Hutson, T.E., Michaelson, M.D., Negrier, S., Oudard, S., Gore, M.E., Tarazi, J., Hariharan, S., 2013a. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma:overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 14, 552-562.
|
Motzer, R.J., Hutson, T.E., Cella, D., Reeves, J., Hawkins, R., Guo, J., Nathan, P., Staehler, M., de Souza, P., Merchan, J.R., 2013b. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369, 722-731.
|
Motzer, R.J., Hutson, T.E., Glen, H., Michaelson, M.D., Molina, A., Eisen, T., Jassem, J., Zolnierek, J., Maroto, J.P., Mellado, B., 2015a. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma:a randomised, phase 2, open-label, multicentre trial. N. Engl. J. Med. 16, 1473-1482.
|
Motzer, R.J., Rini, B.I., McDermott, D.F., Redman, B.G., Kuzel, T.M., Harrison, M.R., Vaishampayan, U.N., Drabkin, H.A., George, S., Logan, T.F., 2015b. Nivolumab for metastatic renal cell carcinoma:results of a randomized phase Ⅱ trial. J. Clin. Oncol. 33, 1430.
|
Motzer, R.J., Hutson, T.E., Tomczak, P., Michaelson, M.D., Bukowski, R.M., Rixe, O., Oudard, S., Negrier, S., Szczylik, C., Kim, S.T., 2007. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115-124.
|
Motzer, R.J., Penkov, K., Haanen, J., Rini, B., Albiges, L., Campbell, M.T., Venugopal, B., Kollmannsberger, C., Negrier, S., Uemura, M., 2019. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103-1115.
|
Moore, L., Jaeger, E., Nickerson, M., Brennan, P., De Vries, S., Roy, R., Toro, J., Li, H., Karami, S., Lenz, P., 2012. Genomic copy number alterations in clear cell renal carcinoma:associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis 1, e14-e14.
|
Motzer, R., Alekseev, B., Rha, S.-Y., Porta, C., Eto, M., Powles, T., Grünwald, V., Hutson, T.E., Kopyltsov, E., Méndez-Vidal, M.J., 2021. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289-1300.
|
Motzer, R.J., Tannir, N.M., McDermott, D.F., Frontera, O.A., Melichar, B., Choueiri, T.K., Plimack, E.R., Barthélémy, P., Porta, C., George, S., 2018. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277-1290.
|
Murali, V.S., Cobanoglu, D.A., Hsieh, M., Zinn, M., Malladi, V.S., Gesell, J., Williams, N.S., Welf, E.S., Raj, G.V., Cobanoglu, M.C., 2021. Cancer drug discovery as a low rank tensor completion problem. bioRxiv. https://doi.org/10.1101/2021.03.08.434311.
|
Na, X., Duan, H.O., Messing, E.M., Schoen, S.R., Ryan, C.K., di Sant'Agnese, P.A., Golemis, E.A., Wu, G., 2003. Identification of the RNA polymerase Ⅱ subunit hsRPB7 as a novel target of the von HippeldLindau protein. EMBO J. 22, 4249-4259.
|
Nakaigawa, N., Yao, M., Baba, M., Kato, S., Kishida, T., Hattori, K., Nagashima, Y., Kubota, Y., 2006. Inactivation of von Hippel-Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma. Canc. Res. 66, 3699-3705.
|
Nicholson, H.E., Tariq, Z., Housden, B.E., Jennings, R.B., Stransky, L.A., Perrimon, N., Signoretti, S., Harris, I.S., Endress, J.E., Kaelin, W.G., 2019. HIFindependent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci. Signal. 12, eaay0482.
|
Nickerson, M.L., Jaeger, E., Shi, Y., Durocher, J.A., Mahurkar, S., Zaridze, D., Matveev, V., Janout, V., Kollarova, H., Bencko, V., 2008. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Canc. Res. 14, 4726-4734.
|
Okumura, F., Uematsu, K., Byrne, S.D., Hirano, M., Joo-Okumura, A., Nishikimi, A., Shuin, T., Fukui, Y., Nakatsukasa, K., Kamura, T., 2016. Parallel regulation of von Hippel-Lindau disease by pVHL-mediated degradation of B-Myb and hypoxiainducible factor α. Molec. Cell. Biol. 36, 1803-1817.
|
Peña-Llopis, S., Christie, A., Xie, X.-J., Brugarolas, J., 2013. Cooperation and antagonism among cancer genes:the renal cancer paradigm. Canc. Res. 73, 4173-4179.
|
Raval, R.R., Lau, K.W., Tran, M.G., Sowter, H.M., Mandriota, S.J., Li, J.-L., Pugh, C.W., Maxwell, P.H., Harris, A.L., Ratcliffe, P.J., 2005. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindauassociated renal cell carcinoma. Molec. Cell. Biol. 25, 5675-5686.
|
Rini, B.I., Appleman, L.J., Figlin, R.A., Plimack, E.R., Merchan, J.R., Wang, K., Thamake, S., Zojwalla, N.J., Choueiri, T.K., McDermott, D.F., 2019a. Results from a phase I expansion cohort of the first-in-class oral HIF-2α inhibitor PT2385 in combination with nivolumab in patients with previously treated advanced RCC. J. Clin. Oncol. 37, 558.
|
Rini, B.I., Plimack, E.R., Stus, V., Gafanov, R., Hawkins, R., Nosov, D., Pouliot, F., Alekseev, B., Soulières, D., Melichar, B., 2019b. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116-1127.
|
Santoni, M., Pantano, F., Amantini, C., Nabissi, M., Conti, A., Burattini, L., Zoccoli, A., Berardi, R., Santoni, G., Tonini, G., 2014. Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochim. Biophys. Acta Rev. Canc. 1845, 221-231.
|
Sasaki, M., Ogiwara, H., 2020. Synthetic lethal therapy based on targeting the vulnerability of SWI/SNF chromatin remodeling complex-deficient cancers. Canc. Sci. 111, 774.
|
Scheuermann, T.H., Li, Q., Ma, H.-W., Key, J., Zhang, L., Chen, R., Garcia, J.A., Naidoo, J., Longgood, J., Frantz, D.E., 2013. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271.
|
Scheuermann, T.H., Tomchick, D.R., Machius, M., Guo, Y., Bruick, R.K., Gardner, K.H., 2009. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc. Natl. Acad. Sci. Unit. States Am. 106, 450-455.
|
Segura, I., Lange, C., Knevels, E., Moskalyuk, A., Pulizzi, R., Eelen, G., Chaze, T., Tudor, C., Boulegue, C., Holt, M., 2016. The oxygen sensor PHD2 controls dendritic spines and synapses via modification of filamin A. Cell Rep. 14, 2653-2667.
|
Semenza, G.L., 2007. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE 2007, cm8.
|
Shen, C., Beroukhim, R., Schumacher, S.E., Zhou, J., Chang, M., Signoretti, S., Kaelin, W.G., 2011. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Canc. Discov. 1, 222-235.
|
Sjölund, J., Johansson, M., Manna, S., Norin, C., Pietras, A., Beckman, S., Nilsson, E., Ljungberg, B., Axelson, H., 2008. Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J. Clin. Invest. 118, 217-228.
|
Strowd, R.E., Ellingson, B.M., Wen, P.Y., Ahluwalia, M.S., Piotrowski, A.F., Desai, A.S., Clarke, J.L., Lieberman, F.S., Desideri, S., Nabors, L.B., 2019. Safety and activity of a first-in-class oral HIF2-alpha inhibitor, PT2385, in patients with first recurrent glioblastoma (GBM). J. Clin. Oncol. 37, 2027.
|
Summers, J., Cohen, M.H., Keegan, P., Pazdur, R., 2010. FDA drug approval summary:bevacizumab plus interferon for advanced renal cell carcinoma. Oncol. 15, 104.
|
Sun, N., Petiwala, S., Lu, C., Hutti, J.E., Hu, M., Hu, M., Domanus, M.H., Mitra, D., Addo, S.N., Miller, C.P., 2019. VHL synthetic lethality signatures uncovered by genotype-specific CRISPR-Cas9 screens. CRISPR J. 2, 230-245.
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., 2021. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249.
|
Thompson, J.M., Alvarez, A., Singha, M.K., Pavesic, M.W., Nguyen, Q.H., Nelson, L.J., Fruman, D.A., Razorenova, O.V., 2018. Targeting the mevalonate pathway suppresses VHL-deficient CC-RCC through an HIF-dependent mechanism. Mol. Canc. Therapeut. 17, 1781-1792.
|
Thompson, J.M., Nguyen, Q.H., Singh, M., Pavesic, M.W., Nesterenko, I., Nelson, L.J., Liao, A.C., Razorenova, O.V., 2017. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene 36, 1080-1089.
|
Turajlic, S., Xu, H., Litchfield, K., Rowan, A., Chambers, T., Lopez, J.I., Nicol, D., O'Brien, T., Larkin, J., Horswell, S., 2018a. Tracking cancer evolution reveals constrained routes to metastases:TRACERx renal. Cell 173, 581-594. e512.
|
Turajlic, S., Xu, H., Litchfield, K., Rowan, A., Horswell, S., Chambers, T., O'Brien, T., Lopez, J.I., Watkins, T.B., Nicol, D., 2018b. Deterministic evolutionary trajectories influence primary tumor growth:TRACERx renal. Cell 173, 595-610. e511.
|
Turcotte, S., Chan, D.A., Sutphin, P.D., Hay, M.P., Denny, W.A., Giaccia, A.J., 2008. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Canc. Cell 14, 90-102.
|
Tykodi, S.S., Donskov, F., Lee, J.-L., Szczylik, C., Malik, J., Alekseev, B.Y., Larkin, J.M., Matveev, V.B., Gafanov, R., Tomczak, P., 2019. First-line pembrolizumab (pembro) monotherapy in advanced clear cell renal cell carcinoma (ccRCC):updated results for KEYNOTE-427 cohort A. J. Clin. Oncol. 37, 4570.
|
Wang, S.-S., Gu, Y.-F., Wolff, N., Stefanius, K., Christie, A., Dey, A., Hammer, R.E., Xie, X.-J., Rakheja, D., Pedrosa, I., 2014. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 111, 16538-16543.
|
Wehn, P.M., Rizzi, J.P., Dixon, D.D., Grina, J.A., Schlachter, S.T., Wang, B., Xu, R., Yang, H., Du, X., Han, G., 2018. Design and activity of specific hypoxia-inducible factor-2α (HIF-2α) inhibitors for the treatment of clear cell renal cell carcinoma:discovery of clinical candidate (S)-3-((2, 2-difluoro-1-hydroxy-7-(methylsulfonyl)-2, 3-dihydro-1 H-inden-4-yl) oxy)-5-fluorobenzonitrile (PT2385). J. Med. Chem. 61, 9691-9721.
|
Wolff, N.C., Pavia-Jimenez, A., Tcheuyap, V.T., Alexander, S., Vishwanath, M., Christie, A., Xie, X.-J., Williams, N.S., Kapur, P., Posner, B., 2015. Highthroughput simultaneous screen and counterscreen identifies homoharringtonine as synthetic lethal with von Hippel-Lindau loss in renal cell carcinoma. Oncotarget 6, 16951.
|
Wu, D., Potluri, N., Lu, J., Kim, Y., Rastinejad, F., 2015. Structural integration in hypoxia-inducible factors. Nature 524, 303-308.
|
Wu, D., Su, X., Lu, J., Li, S., Hood, B.L., Vasile, S., Potluri, N., Diao, X., Kim, Y., Khorasanizadeh, S., 2019a. Bidirectional modulation of HIF-2 activity through chemical ligands. Nat. Chem. Biol. 15, 367-376.
|
Wong, S.C., Cheng, W., Hamilton, H., Nicholas, A.L., Wakefield, D.H., Almeida, A., Blokhin, A.V., Carlson, J., Neal, Z.C., Subbotin, V., 2018. HIF2α-targeted RNAi therapeutic inhibits clear cell renal cell carcinoma. Mol. Canc. Therapeut. 17, 140-149.
|
Wu, J., Contratto, M., Shanbhogue, K.P., Manji, G.A., O'Neil, B.H., Noonan, A., Tudor, R., Lee, R., 2019b. Evaluation of a locked nucleic acid form of antisense oligo targeting HIF-1α in advanced hepatocellular carcinoma. World J. Clin. Oncol. 10, 149.
|
Xu, K., Liu, P., Wei, W., 2014. mTOR signaling in tumorigenesis. Biochim. Biophys. Acta Rev. Canc. 1846, 638-654.
|
Xu, R., Wang, K., Rizzi, J.P., Huang, H., Grina, J.A., Schlachter, S.T., Wang, B., Wehn, P.M., Yang, H., Dixon, D.D., 2019. 3-[(1 S, 2 S, 3 R)-2, 3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl] oxy-5-fluorobenzonitrile (PT2977), a hypoxiainducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell Renal cell carcinoma. J. Med. Chem. 62, 6876-6893.
|
Yin, H., Zheng, L., Liu, W., Zhang, D., Li, W., Yuan, L., 2017. Rootletin prevents Cep68 from VHL-mediated proteasomal degradation to maintain centrosome cohesion. Biochim. Biophys. Acta Mol. Cell Res. 1864, 645-654.
|
Zbar, B., Brauch, H., Talmadge, C., Linehan, M., 1987. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327, 721-724.
|
Zhang, J., Wu, T., Simon, J., Takada, M., Saito, R., Fan, C., Liu, X.-D., Jonasch, E., Xie, L., Chen, X., 2018. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science 361, 290-295.
|
Zhang, Q., Yan, Q., Yang, H., Wei, W., 2019. Oxygen sensing and adaptability won the 2019 Nobel Prize in Physiology or Medicine. Genes Dis. 6, 328-332.
|
Zhou, L., Liu, X.-D., Sun, M., Zhang, X., German, P., Bai, S., Ding, Z., Tannir, N., Wood, C.G., Matin, S.F., 2016. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 35, 2687-2697.
|