5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

A p53/CPEB2 negative feedback loop regulates renal cancer cell proliferation and migration

doi: 10.1016/j.jgg.2021.05.011
Funds:

We thank all the members of Hu's and Liu's laboratory for their discussion and technical support of this work. This study was supported by grants from the National Natural Science Foundation of China (81972377, 82025027, 31301131 and 81972723), the Science and Technology Project of Xuzhou (KC19064), the Social Development Project of Jiangsu Province (BE2019644), and the Natural Science Foundation of the Jiangsu Higher Education Institutions (18KJA320012).

  • Received Date: 2021-01-06
  • Accepted Date: 2021-05-29
  • Rev Recd Date: 2021-05-25
  • Publish Date: 2021-07-20
  • The tumor suppressor p53 transactivates the expression of multiple genes to exert its multifaceted functions and ultimately maintains genome stability. Thus, cancer cells develop various mechanisms to diminish p53 expression and bypass the cell cycle checkpoint. In this study, we identified the gene encoding RNA-binding protein cytoplasmic polyadenylation element-binding protein 2 (CPEB2) as a p53 target. In turn, CPEB2 decreases p53 messenger RNA stability and translation to fine-tune p53 level. Specifically, we showed that CPEB2 binds the cytoplasmic polyadenylation elements in the p53 3'-untranslated region, and the RNA recognition motif and zinc finger (ZF) domains of CPEB2 are required for this binding. Furthermore, we found that CPEB2 was upregulated in renal cancer tissues and promotes the renal cancer cell proliferation and migration. The oncogenic effect of CPEB2 is partially dependent on negative feedback regulation of p53. Overall, we identify a novel regulatory feedback loop between p53 and CPEB2 and demonstrate that CPEB2 promotes tumor progression by inactivating p53, suggesting that CPEB2 is a potential therapeutic target in human renal cancer.

  • These authors contributed equally to this work
  • loading
  • Burns, D.M., Richter, J.D., 2008. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev. 22, 3449-3460.
    Chen, P.J., Huang, Y.S., 2012. CPEB2-eEF2 interaction impedes HIF-1a RNA translation. EMBO J. 31, 959-971.
    Chen, Y., Tsai, Y.H., Tseng, S.H., 2016. Regulation of the expression of cytoplasmic polyadenylation element binding proteins for the treatment of cancer. Anticancer Res. 36, 5673-5680.
    Clegg, H.V., Itahana, K., Zhang, Y., 2008. Unlocking the Mdm2-p53 loop:ubiquitin is the key. Cell Cycle 7, 287-292.
    D'Erchia A, M., Pesole, G., Tullo, A., Saccone, C., Sbisa, E., 1999. Guinea pig p53 mRNA:identification of new elements in coding and untranslated regions and their functional and evolutionary implications. Genomics 58, 50-64.
    Deisenroth, C., Itahana, Y., Tollini, L., Jin, A., Zhang, Y., 2011. p53-Inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation. J. Biol. Chem. 286, 28343-28356.
    DeLigio, J.T., Lin, G., Chalfant, C.E., Park, M.A., 2017. Splice variants of cytosolic polyadenylation element-binding protein 2 (CPEB2) differentially regulate pathways linked to cancer metastasis. J. Biol. Chem. 292, 17909-17918.
    DeLigio, J.T., Stevens, S.C., Nazario-Munoz, G.S., MacKnight, H.P., Doe, K.K., Chalfant, C.E., Park, M.A., 2019. Serine/arginine-Rich splicing factor 3 modulates the alternative splicing of cytoplasmic polyadenylation element binding protein 2. Mol. Cancer Res. 17, 1920-1930.
    Fernandez-Miranda, G., Mendez, R., 2012. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res. Rev. 11, 460-472.
    Fischer, M., 2017. Census and evaluation of p53 target genes. Oncogene 36, 3943-3956.
    Hafner, A., Bulyk, M.L., Jambhekar, A., Lahav, G., 2019. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199-210.
    Hake, L.E., Mendez, R., Richter, J.D., 1998. Specificity of RNA binding by CPEB:requirement for RNA recognition motifs and a novel zinc finger. Mol. Cell Biol. 18, 685-693.
    Ivshina, M., Lasko, P., Richter, J.D., 2014. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. 30, 393-415.
    Johnson, R.M., Vu, N.T., Griffin, B.P., Gentry, A.E., Archer, K.J., Chalfant, C.E., Park, M.A., 2015. The alternative splicing of cytoplasmic polyadenylation element binding protein 2 drives anoikis resistance and the metastasis of triple negative breast cancer. J. Biol. Chem. 290, 25717-25727.
    Kurihara, Y., Tokuriki, M., Myojin, R., Hori, T., Kuroiwa, A., Matsuda, Y., Sakurai, T., Kimura, M., Hecht, N.B., Uesugi, S., 2003. CPEB2, a novel putative translational regulator in mouse haploid germ cells. Biol. Reprod. 69, 261-268.
    Lai, Y.T., Chao, H.W., Lai, A.C., Lin, S.H., Chang, Y.J., Huang, Y.S., 2020. CPEB2-activated PDGFRa mRNA translation contributes to myofibroblast proliferation and pulmonary alveologenesis. J. Biomed. Sci. 27, 52.
    Lane, D.P., 1992. Cancer. p53, guardian of the genome. Nature 358, 15-16.
    Levine, A.J., 2020. p53:800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471-480.
    Mazan-Mamczarz, K., Galban, S., Lopez de Silanes, I., Martindale, J.L., Atasoy, U., Keene, J.D., Gorospe, M., 2003. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc. Natl. Acad. Sci. U. S. A. 100, 8354-8359.
    Nairismagi, M.L., Vislovukh, A., Meng, Q., Kratassiouk, G., Beldiman, C., Petretich, M., Groisman, R., Fuchtbauer, E.M., Harel-Bellan, A., Groisman, I., 2012. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene 31, 4960-4966.
    Nguyen, D., Liao, W., Zeng, S.X., Lu, H., 2017. Reviving the guardian of the genome:small molecule activators of p53. Pharmacol. Ther. 178, 92-108.
    Noon, A.P., Vlatkovic, N., Polanski, R., Maguire, M., Shawki, H., Parsons, K., Boyd, M.T., 2010. p53 and MDM2 in renal cell carcinoma:biomarkers for disease progression and future therapeutic targets? Cancer 116, 780-790.
    Pereira, B., Billaud, M., Almeida, R., 2017. RNA-binding proteins in cancer:old players and new actors. Trends Cancer 3, 506-528.
    Piette, J., Neel, H., Marechal, V., 1997. Mdm2:keeping p53 under control. Oncogene 15, 1001-1010.
    Pique, M., Lopez, J.M., Foissac, S., Guigo, R., Mendez, R., 2008. A combinatorial code for CPE-mediated translational control. Cell 132, 434-448.
    Richter, J.D., 2007. CPEB:a life in translation. Trends Biochem. Sci. 32, 279-285.
    Riley, T., Sontag, E., Chen, P., Levine, A., 2008. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402-412.
    Rosenstierne, M.W., Vinther, J., Mittler, G., Larsen, L., Mann, M., Norrild, B., 2008. Conserved CPEs in the p53 3' untranslated region influence mRNA stability and protein synthesis. Anticancer Res. 28, 2553-2559.
    Sheets, M.D., Fox, C.A., Hunt, T., Vande Woude, G., Wickens, M., 1994. The 3'-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev. 8, 926-938.
    Takagi, M., Absalon, M.J., McLure, K.G., Kastan, M.B., 2005. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123, 49-63.
    Tordjman, J., Majumder, M., Amiri, M., Hasan, A., Hess, D., Lala, P.K., 2019. Tumor suppressor role of cytoplasmic polyadenylation element binding protein 2(CPEB2) in human mammary epithelial cells. BMC Cancer 19, 561.
    Tsvetkov, P., Eisen, T.J., Heinrich, S.U., Brune, Z., Hallacli, E., Newby, G.A., Kayatekin, C., Pincus, D., Lindquist, S., 2020. Persistent activation of mRNA translation by transient Hsp90 inhibition. Cell Rep. 32, 108149.
    Turimella, S.L., Bedner, P., Skubal, M., Vangoor, V.R., Kaczmarczyk, L., Karl, K., Zoidl, G., Gieselmann, V., Seifert, G., Steinhauser, C., et al., 2015. Characterization of cytoplasmic polyadenylation element binding 2 protein expression and its RNA binding activity. Hippocampus 25, 630-642.
    Vilborg, A., Glahder, J.A., Wilhelm, M.T., Bersani, C., Corcoran, M., Mahmoudi, S., Rosenstierne, M., Grander, D., Farnebo, M., Norrild, B., et al., 2009. The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element. Proc. Natl. Acad. Sci. U. S. A. 106, 15756-15761.
    Wang, B., Xiao, Z., Ren, E.C., 2009. Redefining the p53 response element. Proc. Natl. Acad. Sci. U. S. A. 106, 14373-14378.
    Zhang, M., Xu, E., Zhang, J., Chen, X., 2015. PPM1D phosphatase, a target of p53 and RBM38 RNA-binding protein, inhibits p53 mRNA translation via dephosphorylation of RBM38. Oncogene 34, 5900-5911.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (255) PDF downloads (45) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return