5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 8
Aug.  2021
Turn off MathJax
Article Contents

The CRISPR/Cas9 revolution continues: From base editing to prime editing in plant science

doi: 10.1016/j.jgg.2021.05.001
Funds:

We apologize to those whose work was not cited because of space constraints. This work was financially supported by the National Natural Science Foundation of China (32000454), Provincial Natural Science Foundation of Hebei for Excellent Young Scholar (C2020204062), Program for Young Talents of Hebei Education Department (BJ2021025), and Starting Grant from Hebei Agricultural University (YJ201958).

  • Received Date: 2021-03-25
  • Accepted Date: 2021-05-06
  • Rev Recd Date: 2021-04-22
  • Publish Date: 2021-08-20
  • The ability to precisely inactivate or modify genes in model organisms helps us understand the mysteries of life. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a revolutionary technology that could generate targeted mutants, has facilitated notable advances in plant science. Genome editing with CRISPR/Cas9 has gained great popularity and enabled several technical breakthroughs. Herein, we briefly introduce the CRISPR/Cas9, with a focus on the latest breakthroughs in precise genome editing (e.g., base editing and prime editing), and we summarize various platforms that developed to increase the editing efficiency, expand the targeting scope, and improve the specificity of base editing in plants. In addition, we emphasize the recent applications of these technologies to plants. Finally, we predict that CRISPR/Cas9 and CRISPR/Cas9-based genome editing will continue to revolutionize plant science and provide technical support for sustainable agricultural development.

  • These authors contributed equally to this work.
  • loading
  • Adli, M., 2018. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911.
    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., Liu, D.R., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    Anzalone, A.V., Koblan, L.W., Liu, D.R., 2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824-844.
    Bastet, A., Zafirov, D., Giovinazzo, N., Guyon-Debast, A., Nogué, F., Robaglia, C., Gallois, J.L., 2019. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnol. J. 17, 1736-1750.
    Biswas, S., Tian, J., Li, R., Chen, X., Luo, Z., Chen, M., Zhao, X., Zhang, D., Persson, S., Yuan, Z., Shi, J., 2020. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. J. Genet. Genomics 47, 273-280.
    Butt, H., Rao, G.S., Sedeek, K., Aman, R., Kamel, R., Mahfouz, M., 2020. Engineering herbicide resistance via prime editing in rice. Plant Biotechnol. J. 18, 2370-2372.
    Cai, Y., Chen, L., Zhang, Y., Yuan, S., Su, Q., Sun, S., Wu, C., Yao, W., Han, T., Hou, W., 2020. Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnol. J. 18, 1996-1998.
    Chen, Y., Wang, Z., Ni, H., Xu, Y., Chen, Q., Jiang, L., 2017. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci. China Life Sci. 60, 520-523.
    Chen, K., Wang, Y., Zhang, R., Zhang, H., Gao, C., 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667-697.
    Chen, L., Park, J., Paa, P., Rajakumar, P., Prekop, H., Chew, Y., Manivannan, S., Chew, W.L., 2021. Precise and programmable C:G to G:C base editing in genomic DNA. Nat. Commun. 12, 1384.
    Doman, J.L., Raguram, A., Newby, G.A., Liu, D.R., 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620-628.
    Doudna, J.A., Charpentier, E., 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.
    Eck, J.V., 2020. Applying gene editing to tailor precise genetic modifications in plants. J. Biol. Chem. 295, 13267-13276.
    Gao, C., 2021. Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464-471.
    Gaudelli, N.M., Lam, D.K., Rees, H.A., Solá-Esteves, N., Barrera, L.A., Born, D.A., Edwards, A., Gehrke, J., Lee, S., Liquori, A., 2020. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892-900.
    Grünewald, J., Zhou, R., Lareau, C.A., Garcia, S.P., Iyer, S., Miller, B.R., Langner, L.M., Hsu, J.Y., Aryee, M.J., Joung, J.K., 2020. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861-864.
    Han, Y., Kim, J.I., 2019. Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnol. Rep. 13, 447-457.
    Hua, K., Tao, X., Yuan, F., Wang, D., Zhu, J.K., 2018. Precise A·T to G·C base editing in the rice genome. Mol. Plant 11, 627-630.
    Hua, K., Tao, X., Han, P., Wang, R., Zhu, J.K., 2019. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Mol. Plant 12, 1003-1014.
    Hua, K., Zhang, J., Botella, J.R., Ma, C., Kong, F., Liu, B., Zhu, J.K., 2019. Perspectives on the application of genome editing technologies in crop breeding. Mol. Plant 12, 1047-1059.
    Hua, K., Jiang, Y., Tao, X., Zhu, J.K., 2020. Precision genome engineering in rice using prime editing system. Plant Biotechnol. J. 18, 2167-2169.
    Hua, K., Tao, X., Liang, W., Zhang, Z., Gou, R., Zhu, J.K., 2020. Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnol. J. 18, 770-778.
    Jiang, Y.Y., Chai, Y.P., Lu, M.H., Han, X.L., Lin, Q., Zhang, Y., Zhang, Q., Zhou, Y., Wang, X., Gao, C., Chen, Q., 2020. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21, 257.
    Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.L., Zhang, F., Gao, C., 2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292-295.
    Jin, S., Fei, H., Zhu, Z., Luo, Y., Liu, J., Gao, S., Zhang, F., Chen, Y.H., Wang, Y., Gao, C., 2020. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol. Cell 79, 728-740.
    Jin, S., Lin, Q., Luo, Y., Zhu, Z., Liu, G., Li, Y., Chen, K., Qiu, J., Gao, C., Genome-wide specificity of prime editors in plants. Nat. Biotechnol. 10.1038/s41587-021-00891-x.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    Kang, B.C., Yun, J.Y., Kim, S.T., Shin, Y., Ryu, J., Choi, M., Woo, J.W., Kim, J.S., 2018. Precision genome engineering through adenine base editing in plants. Nat. Plants 4, 427-431.
    Kim, K., Ryu, S.M., Kim, S.T., Baek, G., Kim, D., Lim, K., Chung, E., Kim, S., Kim, J.S., 2017. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435-437.
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
    Komor, A.C., Badran, A.H., Liu, D.R., 2017. CRISPR-Based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36.
    Kuang, Y., Li, S., Ren, B., Yan, F., Spetz, C., Li, X., Zhou, X., Zhou, H., 2020. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol. Plant 13, 565-572.
    Kurt, I.C., Zhou, R., Iyer, S., Garcia, S.P., Miller, B.R., Langner, L.M., Grünewald, J., Joung, J.K., 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41-46.
    Kuscu, C., Parlak, M., Tufan, T., Yang, J., Szlachta, K., Wei, X., Mammadov, R., Adli, M., 2017. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710-712.
    Li, J., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., Sheen, J., 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688-691.
    Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J., Gao, C., 2016. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat. Plants 2, 16139.
    Li, J., Sun, Y., Du, J., Zhao, Y., Xia, L., 2017. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant 10, 526-529.
    Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R., Gao, C., 2018. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59.
    Li, J., Li, Y., Ma, L., 2019. CRISPR/Cas9-Based genome editing and its applications for functional genomic analyses in plants. Small Methods 3, 1800473-1800493.
    Li, J., Luo, J., Xu, M., Li, S., Zhang, J., Li, H., Yan, L., Zhao, Y., Xia, L., 2019. Plant genome editing using xCas9 with expanded PAM compatibility. J. Genet. Genomics 46, 277-280.
    Li, Z., Xiong, X., Wang, F., Liang, J., Li, J.F., 2019. Gene disruption through base editing-induced mRNA mis-splicing in plants. New Phytol. 222, 1139-1148.
    Li, C., Zhang, R., Meng, X., Chen, S., Zong, Y., Lu, C., Qiu, J.L., Chen, Y.H., Li, J., Gao, C., 2020. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875-882.
    Li, H., Li, J., Chen, J., Yan, L., Xia, L., 2020. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol. Plant 13, 671-674.
    Li, J., Li, Y., Ma, L., 2021a. Recent Advances in CRISPR/Cas9 and Applications for Wheat Functional Genomics and Breeding. aBIOTECH. https://doi.org/10.1007/s42994-021-00042-5.
    Li, J., Xu, R., Qin, R., Liu, X., Kong, F., Wei, P., 2021. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Mol. Plant 14, 352-360.
    Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., Gao, C., 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261.
    Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., Liu, D.R., Gao, C., 2020. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582-585.
    Lin, Q., Jin, S., Zong, Y., Yu, H., Zhu, Z., Kou, L., Wang, Y., Qiu, J.L., Li, J., Gao, C., 2021. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923-927.
    Liu, X., Qin, R., Li, J., Liao, S., Shan, T., Xu, R., Wu, D., Wei, P., 2020. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice. Plant Biotechnol. J. 18, 1845-1847.
    Lu, Y., Zhu, J.K., 2017. Precise Editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant 10, 523-525.
    Lu, Y., Tian, Y., Shen, R., Yao, Q., Zhong, D., Zhang, X., Zhu, J.K., 2020. Precise genome modification in tomato using an improved prime editing system. Plant Biotechnol. J. 19, 415-417.
    Mao, Y., Botella, J.R., Liu, Y.G., Zhu, J.K., 2019. Gene editing in plants: progress and challenges. Natl. Sci. Rev. 6, 421-437.
    Molla, K.A., Yang, Y., 2019. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol. 37, 1121-1142.
    Molla, K.A., Qi, Y., Karmakar, S., Baig, M.J., 2020. Base editing landscape extends to perform transversion mutation. Trends Genet. 36, 899-901.
    Molla, K.A., Shih, J., Yang, Y., 2020. Single-nucleotide editing for zebra3 and wsl5 henotypes in rice using CRISPR/Cas9-mediated adenine base editors. aBIOTECH 1, 106-118.
    Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D., Kamoun, S., 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693.
    Oliva, R., Ji, C., Atienza Grande, G., Huguet Tapia, J.C., Perez Quintero, A., Li, T., Eom, J., Li, C., Nguyen, H., Liu, B., 2019. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344-1350.
    Qin, L., Li, J., Wang, Q., Xu, Z., Sun, L., Alariqi, M., Manghwar, H., Wang, G., Li, B., Ding, X., 2020. High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol. J. 18, 45-56.
    Rees, H.A., Liu, D.R., 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770-788.
    Rees, H.A., Wilson, C., Doman, J.L., Liu, D.R., Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. eaax5717.
    Ren, Q., Sretenovic, S., Liu, S., Tang, X., Huang, L., He, Y., Liu, L., Guo, Y., Zhong, Z., Liu, G., 2021. PAM-less plant genome editing using a CRISPR-SpRY toolbox. Nat. Plants 7, 25-33.
    Ren, B., Yan, F., Kuang, Y., Li, N., Zhang, D., Zhou, X., Lin, H., Zhou, H., 2018. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol. Plant 11, 623-626.
    Ren, B., Liu, L., Li, S., Kuang, Y., Wang, J., Zhang, D., Zhou, X., Lin, H., Zhou, H., 2019. Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice. Mol. Plant 12, 1015-1026.
    Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G., Thuronyi, B.W., Wilson, C., Koblan, L., Zeng, J., Bauer, D., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883-891.
    Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Jeff Xi, J., Qiu, J.L., Gao, C., 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686-688.
    Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441-443.
    Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K., Cigan, A.M., 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274.
    Veillet, F., Perrot, L., Chauvin, L., Kermarrec, M.P., Guyon-Debast, A., Chauvin, J.E., Nogué, F., Mazier, M., 2019. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int. J. Mol. Sci. 20, 402.
    Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M., Zhang, H., Ren, Y., Gong, G., Zong, M., 2018. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 37, 1353-1356.
    Veillet, F., Kermarrec, M.P., Chauvin, L., Guyon-Debast, A., Chauvin, J.E., Gallois, J.L., Nogué, F., 2020a. Prime Editing Is Achievable in the Tetraploid Potato, but Needs Improvement. bioRxiv. https://doi.org/10.1101/2020.06.18.159111.
    Veillet, F., Perrot, L., Guyon-Debast, A., Kermarrec, M.P., Chauvin, L., Chauvin, J.E., Gallois, J.L., Mazier, M., Nogué, F., 2020. Expanding the CRISPR toolbox in P. patens using SpCas9-NG variant and application for gene and base editing in Solanaceae crops. Int. J. Mol. Sci. 21, 1024.
    Voytas, D.F., Gao, C., Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. e1001877.
    Walton, R.T., Christie, K.A., Whittaker, M.N., Kleinstiver, B.P., 2020. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290-296.
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
    Wang, X., Li, J., Wang, Y., Yang, B., Wei, J., Wu, J., Wang, R., Huang, X., Chen, J., Yang, L., 2018. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946-949.
    Wang, S., Zong, Y., Lin, Q., Zhang, H., Chai, Z., Zhang, D., Chen, K., Qiu, J.L., Gao, C., 2020. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nat. Biotechnol. 38, 1460-1465.
    Weeks, D.P., Spalding, M.H., Yang, B., 2016. Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol. J. 14, 483-495.
    Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., Kim, J.S., 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162-1164.
    Wu, J., Yin, H., 2019. Engineering guide RNA to reduce the off-target effects of CRISPR. J. Genet. Genomics 46, 523-529.
    Wu, J., Chen, C., Xian, G., Liu, D., Lin, L., Yin, S., Sun, Q., Fang, Y., Zhang, H., Wang, Y., 2020. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnol. J. 18, 1857-1859.
    Xing, S., Chen, K., Zhu, H., Zhang, R., Zhang, H., Li, B., Gao, C., 2020. Fine-tuning sugar content in strawberry. Genome Biol. 21, 230.
    Xu, Y., Wang, F., Chen, Z., Wang, J., Li, W.Q., Fan, F., Tao, Y., Zhao, L., Zhong, W., Zhu, Q.H., Yang, J., 2020. Intron-targeted gene insertion in rice using CRISPR/Cas9: a case study of the Pi-ta gene. Crop J 8, 424-431.
    Xu, R., Li, J., Liu, X., Shan, T., Qin, R., Wei, P., 2020. Development of plant prime-editing systems for precise genome editing. Plant Commun. 1, 100043.
    Xu, W., Zhang, C., Yang, Y., Zhao, S., Kang, G., He, X., Song, J., Yang, J., 2020. Versatile nucleotides substitution in plant using an improved prime editing system. Mol. Plant 13, 675-678.
    Xu, Z., Kuang, Y., Ren, B., Yan, D., Yan, F., Spetz, C., Sun, W., Wang, G., Zhou, X., Zhou, H., 2021. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol. 22, 6.
    Xue, C., Zhang, H., Lin, Q., Fan, R., Gao, C., 2018. Manipulating mRNA splicing by base editing in plants. Sci. China Life Sci. 61, 1293-1300.
    Yan, F., Kuang, Y., Ren, B., Wang, J., Zhang, D., Lin, H., Yang, B., Zhou, X., Zhou, H., 2018. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol. Plant 11, 631-634.
    Yu, Y., Leete, T.C., Born, D.A., Young, L., Barrera, L.A., Lee, S.J., Rees, H.A., Ciaramella, G., Gaudelli, N.M., 2020. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052.
    Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
    Zeng, D., Li, X., Huang, J., Li, Y., Cai, S., Yu, W., Li, Y., Huang, Y., Xie, X., Gong, Q., Tan, J., Zheng, Z., Guo, M., Liu, Y.G., Zhu, Q., 2020. Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice. Plant Biotechnol. J. 18, 1348-1350.
    Zeng, D., Liu, T., Tan, J., Zhang, Y., Zheng, Z., Wang, B., Zhou, D., Xie, X., Guo, M., Liu, Y.G., Zhu, Q., 2020. PhieCBEs: plant high-efficiency cytidine base editors with expanded target range. Mol. Plant 13, 1666-1669.
    Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J., Gao, C., 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617.
    Zhang, Y., Massel, K., Godwin, I.D., Gao, C., 2018. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210.
    Zhang, R., Liu, J., Chai, Z., Chen, S., Bai, Y., Zong, Y., Chen, K., Li, J., Jiang, L., Gao, C., 2019. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants 5, 480-485.
    Zhang, Y., Malzahn, A.A., Sretenovic, S., Qi, Y., 2019. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778-794.
    Zhang, R., Chen, S., Meng, X., Chai, Z., Wang, D., Yuan, Y., Chen, K., Jiang, L., Li, J., Gao, C., Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci. China Life Sci. 10.1007/s11427-020-1800-5.
    Zhang, Y., Pribil, M., Palmgren, M., Gao, C., 2020. A CRISPR way for accelerating improvement of food crops. Nat. Food 1, 200-205.
    Zhang, X., Zhu, B., Chen, L., Xie, L., Yu, W., Wang, Y., Li, L., Yin, S., Yang, L., Hu, H., 2020. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856-860.
    Zhang, C., Wang, Y., Wang, F., Zhao, S., Song, J., Feng, F., Zhao, J., Yang, J., 2021. Expanding base editing scope to near-PAMless with engineered CRISPR/Cas9 variants in plants. Mol. Plant 14, 191-194.
    Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M., Rosser, S., Bi, C., Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35-40.
    Zhong, Z., Sretenovic, S., Ren, Q., Yang, L., Bao, Y., Qi, C., Yuan, M., He, Y., Liu, S., Liu, X., 2019. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol. Plant 12, 1027-1036.
    Zhou, C., Sun, Y., Yan, R., Liu, Y., Zuo, E., Gu, C., Han, L., Wei, Y., Hu, X., Zeng, R., Li, Y., Zhou, H., Guo, F., Yang, H., 2019. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275-278.
    Zhu, H., Li, C., Gao, C., 2020. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661-677.
    Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., Gao, C., 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440.
    Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.L., Gao, C., 2018. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950-953.
    Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., Yang, H., 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (593) PDF downloads (45) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return