Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A., Behjati, S., Biankin, A.V., Bignell, G.R., Bolli, N., Borg, A., Borresen-Dale, A.L., et al., 2013. Signatures of mutational processes in human cancer. Nature 500, 415-421.
|
Auslander, N., Zhang, G., Lee, J.S., Frederick, D.T., Miao, B., Moll, T., Tian, T., Wei, Z., Madan, S., Sullivan, R.J., et al., 2018. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med. 24, 1545-1549.
|
Bao, X., Shi, R., Zhao, T., Wang, Y., Anastasov, N., Rosemann, M., Fang, W., 2020. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus m2-like tumour-associated macrophage infiltration and aggressiveness in tnbc. Cancer Immunol. Immunother. 70, 189-202.
|
Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R., 2018. Integrating singlecell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411-420.
|
Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al., 2012. The cbio cancer genomics portal:an open platform for exploring multidimensional cancer genomics data. Canc. Discov. 2, 401-404.
|
Chang, C.H., Pearce, E.L., 2016. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat. Immunol. 17, 364-368.
|
Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., Hackl, H., Trajanoski, Z., 2017. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248-262.
|
Chen, B., Khodadoust, M.S., Liu, C.L., Newman, A.M., Alizadeh, A.A., 2018. Profiling tumor infiltrating immune cells with cibersort. Methods Mol. Biol. 1711, 243-259.
|
Chen, P.L., Roh, W., Reuben, A., Cooper, Z.A., Spencer, C.N., Prieto, P.A., Miller, J.P., Bassett, R.L., Gopalakrishnan, V., Wani, K., et al., 2016. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Canc. Discov. 6, 827-837.
|
Cristescu, R., Mogg, R., Ayers, M., Albright, A., Murphy, E., Yearley, J., Sher, X., Liu, X.Q., Lu, H., Nebozhyn, M., et al., 2018. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593.
|
Daud, A.I., Wolchok, J.D., Robert, C., Hwu, W.J., Weber, J.S., Ribas, A., Hodi, F.S., Joshua, A.M., Kefford, R., Hersey, P., et al., 2016. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J. Clin. Oncol. 34, 4102-4109.
|
Eddy, J.A., Thorsson, V., Lamb, A.E., Gibbs, D.L., Heimann, C., Yu, J.X., Chung, V., Chae, Y., Dang, K., Vincent, B.G., et al., 2020. Cri iatlas:an interactive portal for immuno-oncology research. F1000Res 9, 1028.
|
Gibney, G.T., Weiner, L.M., Atkins, M.B., 2016. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542-e551.
|
Gide, T.N., Quek, C., Menzies, A.M., Tasker, A.T., Shang, P., Holst, J., Madore, J., Lim, S.Y., Velickovic, R., Wongchenko, M., et al., 2019. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Canc. Cell 35, 238-255. e6.
|
Griss, J., Bauer, W., Wagner, C., Simon, M., Chen, M., GrabmeierPfistershammer, K., Maurer-Granofszky, M., Roka, F., Penz, T., Bock, C., et al., 2019. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186.
|
Hamid, O., Robert, C., Daud, A., Hodi, F.S., Hwu, W.J., Kefford, R., Wolchok, J.D., Hersey, P., Joseph, R.W., Weber, J.S., et al., 2013. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134-144.
|
Havel, J.J., Chowell, D., Chan, T.A., 2019. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133-150.
|
Hugo, W., Zaretsky, J.M., Sun, L., Song, C., Moreno, B.H., Hu-Lieskovan, S., BerentMaoz, B., Pang, J., Chmielowski, B., Cherry, G., et al., 2016. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35-44.
|
Isaeva, O.I., Sharonov, G.V., Serebrovskaya, E.O., Turchaninova, M.A., Zaretsky, A.R., Shugay, M., Chudakov, D.M., 2019. Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. J. Immunother. Cancer 7, 279.
|
Jerby-Arnon, L., Shah, P., Cuoco, M.S., Rodman, C., Su, M.J., Melms, J.C., Leeson, R., Kanodia, A., Mei, S., Lin, J.R., et al., 2018. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984-997. e24.
|
Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., Li, Z., Traugh, N., Bu, X., Li, B., et al., 2018. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550-1558.
|
Johnson, D.B., Frampton, G.M., Rioth, M.J., Yusko, E., Xu, Y., Guo, X., Ennis, R.C., Fabrizio, D., Chalmers, Z.R., Greenbowe, J., et al., 2016. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol. Res. 4, 959-967.
|
Kim, S.S., Shen, S., Miyauchi, S., Sanders, P.D., Franiak-Pietryga, I., Mell, L., Gutkind, J.S., Cohen, E.E.W., Califano, J.A., Sharabi, A.B., 2020. B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade. Clin. Canc. Res. 26, 3345-3359.
|
Kirkwood, J.M., Tarhini, A.A., Panelli, M.C., Moschos, S.J., Zarour, H.M., Butterfield, L.H., Gogas, H.J., 2008. Next generation of immunotherapy for melanoma. J. Clin. Oncol. 26, 3445-3455.
|
Kluger, H.M., Zito, C.R., Barr, M.L., Baine, M.K., Chiang, V.L., Sznol, M., Rimm, D.L., Chen, L., Jilaveanu, L.B., 2015. Characterization of PD-L1 expression and associated T-cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin. Canc. Res. 21, 3052-3060.
|
Krieg, C., Nowicka, M., Guglietta, S., Schindler, S., Hartmann, F.J., Weber, L.M., Dummer, R., Robinson, M.D., Levesque, M.P., Becher, B., 2018. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144-153.
|
Le, D.T., Uram, J.N., Wang, H., Bartlett, B.R., Kemberling, H., Eyring, A.D., Skora, A.D., Luber, B.S., Azad, N.S., Laheru, D., et al., 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509-2520.
|
Lesterhuis, W.J., Bosco, A., Millward, M.J., Small, M., Nowak, A.K., Lake, R.A., 2017. Dynamic versus static biomarkers in cancer immune checkpoint blockade:unravelling complexity. Nat. Rev. Drug Discov. 16, 264-272.
|
Li, H., van der Leun, A.M., Yofe, I., Lubling, Y., Gelbard-Solodkin, D., van Akkooi, A.C.J., van den Braber, M., Rozeman, E.A., Haanen, J., Blank, C.U., et al., 2019. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775-789. e18.
|
Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J.S., Li, B., Liu, X.S., 2017. Timer:a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108-e110.
|
Liu, C., He, H., Li, X., Su, M.A., Cao, Y., 2019. Dynamic metrics-based biomarkers to predict responders to anti-PD-1 immunotherapy. Br. J. Canc. 120, 346-355.
|
Mockler, M.B., Conroy, M.J., Lysaght, J., 2014. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front. Oncol. 4, 107.
|
Nathanson, T., Ahuja, A., Rubinsteyn, A., Aksoy, B.A., Hellmann, M.D., Miao, D., Van Allen, E., Merghoub, T., Wolchok, J.D., Snyder, A., et al., 2017. Somatic mutations and neoepitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol. Res. 5, 84-91.
|
Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., Alizadeh, A.A., 2015. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453-457.
|
Ni, L., Lu, J., 2018. Interferon gamma in cancer immunotherapy. Cancer Med. 7, 4509-4516.
|
Nishino, M., Ramaiya, N.H., Hatabu, H., Hodi, F.S., 2017. Monitoring immunecheckpoint blockade:response evaluation and biomarker development. Nat. Rev. Clin. Oncol. 14, 655-668.
|
Orta-Mascaro, M., Consuegra-Fernandez, M., Carreras, E., Roncagalli, R., CarrerasSureda, A., Alvarez, P., Girard, L., Simoes, I., Martinez-Florensa, M., Aranda, F., et al., 2016. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J. Exp. Med. 213, 1387-1397.
|
Pardoll, D.M., 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252-264.
|
Prat, A., Navarro, A., Pare, L., Reguart, N., Galvan, P., Pascual, T., Martinez, A., Nuciforo, P., Comerma, L., Alos, L., et al., 2017. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540-3550.
|
Riaz, N., Havel, J.J., Makarov, V., Desrichard, A., Urba, W.J., Sims, J.S., Hodi, F.S., Martin-Algarra, S., Mandal, R., Sharfman, W.H., et al., 2017. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934-949. e16.
|
Robert, C., Schachter, J., Long, G.V., Arance, A., Grob, J.J., Mortier, L., Daud, A., Carlino, M.S., McNeil, C., Lotem, M., et al., 2015. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521-2532.
|
Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B.S., Swanton, C., 2016. Deconstructsigs:delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31.
|
Sade-Feldman, M., Yizhak, K., Bjorgaard, S.L., Ray, J.P., de Boer, C.G., Jenkins, R.W., Lieb, D.J., Chen, J.H., Frederick, D.T., Barzily-Rokni, M., et al., 2018. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998-1013 e20.
|
Salem, J.E., Manouchehri, A., Moey, M., Lebrun-Vignes, B., Bastarache, L., Pariente, A., Gobert, A., Spano, J.P., Balko, J.M., Bonaca, M.P., et al., 2018. Cardiovascular toxicities associated with immune checkpoint inhibitors:an observational, retrospective, pharmacovigilance study. Lancet Oncol. 19, 1579-1589.
|
Samstein, R.M., Lee, C.H., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., Barron, D.A., Zehir, A., Jordan, E.J., Omuro, A., et al., 2019. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202-206.
|
Sharma, P., Allison, J.P., 2015. The future of immune checkpoint therapy. Science 348, 56-61.
|
Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J.M., Desrichard, A., Walsh, L.A., Postow, M.A., Wong, P., Ho, T.S., et al., 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189-2199.
|
Taube, J.M., Anders, R.A., Young, G.D., Xu, H., Sharma, R., McMiller, T.L., Chen, S., Klein, A.P., Pardoll, D.M., Topalian, S.L., et al., 2012. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra137.
|
Taube, J.M., Klein, A., Brahmer, J.R., Xu, H., Pan, X., Kim, J.H., Chen, L., Pardoll, D.M., Topalian, S.L., Anders, R.A., 2014. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-pd-1 therapy. Clin. Canc. Res. 20, 5064-5074.
|
Thommen, D.S., 2019. The first shall (be) last:understanding durable T cell responses in immunotherapy. Immunity 50, 6-8.
|
Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth 2nd, M.H., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al., 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196.
|
Van Allen, E.M., Miao, D., Schilling, B., Shukla, S.A., Blank, C., Zimmer, L., Sucker, A., Hillen, U., Foppen, M.H.G., Goldinger, S.M., et al., 2015. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207-211.
|