5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 3
Mar.  2021
Turn off MathJax
Article Contents

Smyd1 is essential for myosin expression and sarcomere organization in craniofacial, extraocular, and cardiac muscles

doi: 10.1016/j.jgg.2021.03.004
More Information
  • Corresponding author: E-mail address: sdu@som.umaryland.edu (Shaojun Du)
  • Received Date: 2020-10-29
  • Accepted Date: 2021-03-02
  • Rev Recd Date: 2021-02-22
  • Available Online: 2021-04-07
  • Publish Date: 2021-03-20
  • Skeletal and cardiac muscles are striated myofibers that contain highly organized sarcomeres for muscle contraction. Recent studies revealed that Smyd1, a lysine methyltransferase, plays a key role in sarcomere assembly in heart and trunk skeletal muscles. However, Smyd1 expression and function in craniofacial muscles are not known. Here, we analyze the developmental expression and function of two smyd1 paralogous genes, smyd1a and smyd1b, in craniofacial and cardiac muscles of zebrafish embryos. Our data show that loss of smyd1a (smyd1a) or smyd1b (smyd1b) has no visible effects on myogenic commitment and expression of myod and myosin heavy-chain mRNA transcripts in craniofacial muscles. However, myosin heavy-chain protein accumulation and sarcomere organization are dramatically reduced in smyd1b single mutant, and almost completely diminish in smyd1a; smyd1b double mutant, but not in smyd1a mutant. Similar defects are also observed in cardiac muscles ofsmyd1b mutant. Defective craniofacial and cardiac muscle formation is associated with an upregulation of hsp90α1 and unc45b mRNA expression in smyd1b and smyd1a; smyd1b mutants. Together, our studies indicate that Smyd1b, but not Smyd1a, plays a key role in myosin heavy-chain protein expression and sarcomere organization in craniofacial and cardiac muscles. Loss of smyd1b results in muscle-specific stress response.
  • Current affiliation: School of Life Sciences, Shandong University of Technology, Zibo 255049, China.
  • loading
  • [1]
    Berkholz, J., Eberle, R., Boller, K., Munz, B., 2018. siRNA-mediated inhibition of skNAC and Smyd1 expression disrupts myofibril organization: Immunofluorescence and electron microscopy study in C2C12 cells. Micron 108, 6-10.
    [2]
    Bernick, E.P., Zhang, P.J., Du. S., 2010. Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol. 11, 70.
    [3]
    Busch-Nentwich, E., Kettleborough, R., Dooley, C.M., Scahill, C., Sealy, I., White, R., Herd, C., Mehroke, S., Wali, N., Carruthers, S., et al., 2013. Sanger Institute Zebrafish Mutation Project mutant data submission. ZFIN Direct Data Submission.
    [4]
    Cai, M., Han, L., Liu, L., He, F., Chu, W., Zhang, J., Tian, Z., Du, S., 2019. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants. FASEB J. 33, 6209-6225.
    [5]
    Cornett, E.M., Ferry, L., Defossez, P.A., Rothbart. S.B., 2019. Lysine methylation regulators moonlighting outside the epigenome. Mol. Cell 75, 1092-1101.
    [6]
    Coyan, G.N., Zinn, M.D., West, S.C., Sharma, M.S., 2019. Heart transplantation from biventricular support in infant with novel smyd1 mutation. Pediatr Cardiol. 40, 1745-1747.
    [7]
    de Winter, J.M., Ottenheijm, C.A.C., 2017. Sarcomere dysfunction in nemaline myopathy. J. Neuromuscul Dis. 4, 99-113.
    [8]
    Diogo, R., Hinits, Y., Hughes, S.M., 2008. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods. BMC Dev. Biol. 8, 24.
    [9]
    Donlin, L.T., Andresen, C., Just, S., Rudensky, E., Pappas, C.T., Kruger, M., Jacobs, E.Y., Unger, A., Zieseniss, A., Dobenecker, M.W., et al., 2012. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev. 26, 114-9.
    [10]
    Du, S.J., Rotllant, J., Tan, X., 2006. Muscle-specific expression of the smyd1 gene is controlled by its 5.3-kb promoter and 5'-flanking sequence in zebrafish embryos. Dev. Dyn. 235, 3306-3315.
    [11]
    Du, S.J., Li, H., Bian, Y., Zhong, Y., 2008. Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A. 105, 554-559.
    [12]
    Du, S.J., Tan, X., Zhang, J., 2014. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat. Rec. (Hoboken) 297, 1650-1662.
    [13]
    Espinosa-Cantu, A., Ascencio, D., Barona-Gomez, F., DeLuna, A., 2015. Gene duplication and the evolution of moonlighting proteins. Front Genet. 6, 227.
    [14]
    Etard, C., Behra, M., Fischer, N., Hutcheson, D., Geisler, R., Strahle, U., 2007. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90α during myofibrillogenesis. Dev. Biol. 308, 133-143.
    [15]
    Etard, C., Armant, O., Roostalu, U., Gourain, V., Ferg, M., Strahle, U., 2015. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol. 16, 267.
    [16]
    Fan, L.L., Din,g D.B., Huang, H., Chen, Y.Q., Jin, J.Y., Xia, K., Xiang, R., 2019. A de novo mutation of SMYD1 (p.F272L) is responsible for hypertrophic cardiomyopathy in a Chinese patient. Clin. Chem. Lab. Med. 57, 532-539.
    [17]
    Franklin, S., Kimball, T., Rasmussen, T.L., Rosa-Garrido, M., Chen, H., Tran, T., Miller, M.R., Gray, R., Jiang, S., Ren, S., et al., 2016. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. Am. J. Physiol. Heart Circ. Physiol. 311, H1234-H1247.
    [18]
    Gao, J., Li, J., Li, B.J., Yagil, E., Zhang, J., Du, S.J., 2014. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles. PloS one. 9, e86808.
    [19]
    Gottlieb, P.D., Pierce, S.A., Sims, R.J., Yamagishi, H., Weihe, E.K., Harriss, J.V., Maika, S.D., Kuziel, W.A., King, H.L., Olson, E.N., et al., 2002. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat. Genet. 31, 25-32.
    [20]
    Hardy, M., Harris, I., Perry, S.V., Stone, D., 1970. Epsilon-N-monomethyl-lysine and trimethyl-lysine in myosin. Biochem J. 117, 44P-45P.
    [21]
    Hawkins, T.A., Haramis, A.P., Etard, C., Prodromou, C., Vaughan, C.K., Ashworth, R., Ray, S., Behra, M., Holder, N., Talbot, W.S., et al., 2008. The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development 135, 1147-1156.
    [22]
    Hernandez, L.P., Patterson, S.E., Devoto, S.H., 2005. The development of muscle fiber type identity in zebrafish cranial muscles. Anat. Embryol. (Berl) 209, 323-334.
    [23]
    Huszar, G., Elzinga, M., 1969. Epsilon-N-methyl lysine in myosin. Nature 223, 834-5.
    [24]
    Huszar, G., 1972. Amino acid sequences around the two -N-trimethyllysine residues in rabbit skeletal muscle myosin. J. Biol. Chem. 247, 4057-4062.
    [25]
    Hwang, P.M., Sykes, B.D., 2015. Targeting the sarcomere to correct muscle function. Nat. Rev. Drug. Discov. 14, 313-28.
    [26]
    Just, S., Meder, B., Berger, I.M., Etard, C., Trano, N., Patzel, E., Hassel, D., Marquart, S., Dahme, T., Vogel, B., et al., 2011. The myosin-interacting protein SMYD1 is essential for sarcomere organization. J. Cell Sci. 124, 3127-3136.
    [27]
    Laing, N.G., Nowak, K.J., 2005. When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays 27, 809-822.
    [28]
    Li, H., Zhong, Y., Wang, Z., Gao, J., Xu, J., Chu, W., Zhang, J., Fang, S., Du, S.J., 2013. Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol. Biol. Cell 24, 3511-3521.
    [29]
    Li, S., Wen, H., Du, S. J., 2020. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J. 34, 1378-1397.
    [30]
    Martin, T.G., Kirk, J.A., 2020. Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J. Mol. Cell. Cardiol. 148, 9-102.
    [31]
    Meyer, A., Schartl, M., 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11, 699-704.
    [32]
    Murn, J., Shi, Y., 2017. The winding path of protein methylation research: milestones and new frontiers. Nat. Rev. Mol. Cell Biol. 18, 517-527.
    [33]
    Nagandla, H., Lopez, S., Yu, W., Rasmussen, T.L., Tucker, H.O., Schwartz, R.J., Stewart, M.D., 2016. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev. Biol. 410, 86-97.
    [34]
    Noden, D.M., 1986. Patterning of avian craniofacial muscles. Dev. Biol. 116, 347-356.
    [35]
    Noden, D.M., Francis-West, P., 2006. The differentiation and morphogenesis of craniofacial muscles. Dev. Dyn. 235, 1194-218.
    [36]
    Ohno, S., Wolf, U., Atki,n N.B., 1968. Evolution from fish to mammals by gene duplication. Hereditas 59, 169-187.
    [37]
    Ohno, S., 1970. Evolution by gene duplication, London: George Alien & Unwin Ltd. Berlin: Springer-Verlag.
    [38]
    Paone, C., Rudeck, S., Etard, C., Strahle, U., Rottbauer, W., Just, S., 2018. Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response. Biochem. Biophys. Res. Commun. 496, 339-345.
    [39]
    Park, C.Y., Pierce, S.A., von Drehle, M., Ivey, K.N., Morgan, J.A., Blau, H.M., Srivastava, D., 2010. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proc Natl Acad Sci U S A. 107, 20750-20755.
    [40]
    Phan, D., Rasmussen, T.L., Nakagawa, O., McAnally, J., Gottlieb, P.D., Tucker, P.W., Richardson, J.A., Bassel-Duby, R., Olson, E.N., 2005. BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development 132, 2669-2678.
    [41]
    Prill, K., Windsor Reid, P., Wohlgemuth, S.L., Pilgrim, D.B., 2015. Still heart encodes a structural hmt, smyd1b, with chaperone-like function during fast muscle sarcomere assembly. PloS One 10, e0142528.
    [42]
    Rasmussen, T.L., Ma, Y., Park, C.Y., Harriss, J., Pierce, S.A., Dekker, J.D., Valenzuela, N., Srivastava, D., Schwartz, R.J., Stewart, M.D., et al., 2015. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One 10, e0121765.
    [43]
    Rasmussen, T.L., Tucker, H.O., 2018. Loss of smyd1 results in perinatal lethality via selective defects within myotonic muscle descendants. Diseases. 7, 1.
    [44]
    Rastogi, S., Liberles, D.A., 2005. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28.
    [45]
    Rice, D.P., 2005. Craniofacial anomalies: from development to molecular pathogenesis. Curr. Mol. Med.5, 699-722.
    [46]
    Sambasivan, R., Kuratani, S., Tajbakhsh, S., 2011. An eye on the head: the development and evolution of craniofacial muscles. Development 138, 2401-2415.
    [47]
    Sanger, J.W., Wang, J., Fan, Y., White, J., Sanger, J.M., 2010. Assembly and dynamics of myofibrils. J. Biomed. Biotechnol. 2010, 858606.
    [48]
    Sanger, J.W., Wang, J., Fan, Y., White, J., Mi-Mi, L., Dube, D.K., Sanger, J.M., Pruyne, D., 2017. Assembly and maintenance of myofibrils in striated muscle. Handb. Exp. Pharmacol. 235, 39-75.
    [49]
    Schilling, T.F., Kimmel, C.B., 1994. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483-494.
    [50]
    Schilling, T.F., Kimmel, C.B., 1997. Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 124, 2945-2960.
    [51]
    Sims, R.J., 3rd, Weihe, E.K., Zhu, L., O'Malley, S., Harriss, J.V., Gottlieb, P.D., 2002. m-Bop, a repressor protein essential for cardiogenesis, interacts with skNAC, a heart- and muscle-specific transcription factor. J. Biol. Chem. 277, 26524-26529.
    [52]
    Sparrow, J.C., Schock, F., 2009. The initial steps of myofibril assembly: integrins pave the way. Nat. Rev. Mol. Cell Biol. 10, 293-298.
    [53]
    Stewart, M.D., Lopez, S., Nagandla, H., Soibam, B., Benham, A., Nguyen, J., Valenzuela, N., Wu, H.J., Burns, A.R., Rasmussen, T.L., et al., 2016. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis. Model Mech. 9, 347-359.
    [54]
    Sun, X.J., Xu, P.F., Zhou, T., Hu, M., Fu, C.T., Zhang, Y., Jin, Y., Chen, Y., Chen, S.J., Huang, Q.H., Liu, T.X., Chen, Z., 2008. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes. PloS one. 3, e1499.
    [55]
    Sweeney, H.L., Hammers, D.W., 2018. Muscle contraction. Cold Spring Harbor perspectives in Biology. 10.
    [56]
    Tan, X., Rotllant, J., Li, H., De Deyne, P., Du, S.J., 2006. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A. 103, 2713-2718.
    [57]
    Thisse, C., Thisse, B., 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69.
    [58]
    Tong, S.W., Elzinga, M., 1983. The sequence of the NH2-terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin. J. Biol. Chem. 258, 13100-13110.
    [59]
    Walker, M.B., Kimmel, C.B., 2007. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech. Histochem. 82, 23-28.
    [60]
    Warren, J.S., Tracy, C.M., Miller, M.R., Makaju, A., Szulik, M.W., Oka, S.I., Yuzyuk, T.N., Cox, J.E., Kumar, A., Lozier, B.K., et al., 2018. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc. Natl. Acad. Sci. U. S. A. 115, E7871-E7880.
    [61]
    Weinberg, E.S., Allende, M.L., Kelly, C.S., Abdelhamid, A., Murakami, T., Andermann, P., Doerre, O.G., Grunwald, D.J., Riggleman, B., 1996. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development 122, 271-280.
    [62]
    Wohlgemuth, S.L., Crawford, B.D., Pilgrim, D.B., 2007. The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev. Biol. 303, 483-492.
    [63]
    Wu, Z., Connolly, J., Biggar, K.K., 2017. Beyond histones - the expanding roles of protein lysine methylation. FEBS J. 284, 2732-2744.
    [64]
    Xu, J., Gao, J., Li, J., Xue, L., Clark, K.J., Ekker, S.C., Du, S.J., 2012. Functional analysis of slow myosin heavy chain 1 and myomesin-3 in sarcomere organization in zebrafish embryonic slow muscles. J. Genet. Genomics. 39, 69-80.
    [65]
    Yang, X. D., Lamb A. & Chen, L. F., 2009. Methylation, a new epigenetic mark for protein stability. Epigenetics 4, 429-433.
    [66]
    Ziermann, J.M., Diogo, R., Noden, D.M., 2018. Neural crest and the pa tterning of vertebrate craniofacial muscles. Genesis 56, e23097.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (162) PDF downloads (9) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return