5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 4
Apr.  2021
Turn off MathJax
Article Contents

Targeted sequencing and integrative analysis of 3,195 Chinese patients with neurodevelopmental disorders prioritized 26 novel candidate genes

doi: 10.1016/j.jgg.2021.03.002
Funds:

This work was supported by the Guangdong Key Project in "Development of new tools for diagnosis and treatment of Autism" (2018B030335001 to Z. Sun) and "Early diagnosis and treatment of autism spectrum disorders" (202007030002 to Z. Sun), the National Natural Science Foundation of China (32070590 to Y. Wang), the National Natural Science Foundation of China (81730036 and 81525007 to K. Xia), Science and Technology Major Project of Hunan Provincial Science and Technology Department (2018SK1030 to K. Xia), the National Natural Science Foundation of China (81801133 to J. Li), the Young Elite Scientist Sponsorship Program by CAST (2018QNRC001 to J. Li), the Innovation-Driven Project of Central South University (20180033040004 to J. Li) and Natural Science Foundation of Hunan Province for outstanding Young Scholars (2020JJ3059 to J. Li).

  • Received Date: 2020-12-08
  • Accepted Date: 2021-03-07
  • Rev Recd Date: 2021-03-05
  • Publish Date: 2021-04-20
  • Neurodevelopmental disorders (NDDs) are a set of complex disorders characterized by diverse and cooccurring clinical symptoms. The genetic contribution in patients with NDDs remains largely unknown. Here, we sequence 519 NDD-related genes in 3,195 Chinese probands with neurodevelopmental phenotypes and identify 2,522 putative functional mutations consisting of 137 de novo mutations (DNMs) in 86 genes and 2,385 rare inherited mutations (RIMs) with 22 X-linked hemizygotes in 13 genes, 2 homozygous mutations in 2 genes and 23 compound heterozygous mutations in 10 genes. Furthermore, the DNMs of 16,807 probands with NDDs are retrieved from public datasets and combine in an integrated analysis with the mutation data of our Chinese NDD probands by taking 3,582 in-house controls of Chinese origin as background. We prioritize 26 novel candidate genes. Notably, six of these genes — ITSN1, UBR3, CADM1, RYR3, FLNA, and PLXNA3 — preferably contribute to autism spectrum disorders (ASDs), as demonstrated by high co-expression and/or interaction with ASD genes confirmed via rescue experiments in a mouse model. Importantly, these genes are differentially expressed in the ASD cortex in a significant manner and involved in ASD-associated networks. Together, our study expands the genetic spectrum of Chinese NDDs, further facilitating both basic and translational research.
  • These authors contributed equally to this work.
  • loading
  • Al-Mubarak, B., Abouelhoda, M., Omar, A., AlDhalaan, H., Aldosari, M., Nester, M., Alshamrani, H.A., El-Kalioby, M., Goljan, E., Albar, R., et al., 2017. Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci. Rep. 7, 5679.
    An, J.Y., Lin, K., Zhu, L., Werling, D.M., Dong, S., Brand, H., Wang, H.Z., Zhao, X., Schwartz, G.B., Collins, R.L., et al., 2018. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362, eaat6576.
    Ben-David, E., Shifman, S., 2013. Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism. Mol. Psychiatr. 18, 1054-1056.
    Breuillard, D., Leunen, D., Chemaly, N., Auclair, L., Pinard, J.M., Kaminska, A., Desguerre, I., Ouss, L., Nabbout, R., 2016. Autism spectrum disorder phenotype and intellectual disability in females with epilepsy and PCDH-19 mutations. Epilepsy Behav. 60, 75-80.
    Chang, J., Gilman, S.R., Chiang, A.H., Sanders, S.J., Vitkup, D., 2015. Genotype to phenotype relationships in autism spectrum disorders. Nat. Neurosci. 18, 191-198.
    Christensen, D.L., Bilder, D.A., Zahorodny, W., Pettygrove, S., Durkin, M.S., Fitzgerald, R.T., Rice, C., Kurzius-Spencer, M., Baio, J., Yeargin-Allsopp, M., 2016. Prevalence and characteristics of autism spectrum disorder among 4-yearold children in the autism and developmental disabilities monitoring network.J. Dev. Behav. Pediatr. 37, 1-8.
    Coe, B.P., Stessman, H.A.F., Sulovari, A., Geisheker, M.R., Bakken, T.E., Lake, A.M., Dougherty, J.D., Lein, E.S., Hormozdiari, F., Bernier, R.A., et al., 2019. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet. 51, 106-116.
    de Crescenzo, F., Postorino, V., Siracusano, M., Riccioni, A., Armando, M., Curatolo, P., Mazzone, L., 2019. Autistic symptoms in schizophrenia spectrum disorders: a systematic review and meta-analysis. Front. Psychiatr. 10, 78.
    de Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Cicek, A.E., Kou, Y., Liu, L., Fromer, M., Walker, S., et al., 2014. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209-215.
    Deciphering Developmental Disorders Study, 2017. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433-438.
    Doan, R.N., Lim, E.T., de Rubeis, S., Betancur, C., Cutler, D.J., Chiocchetti, A.G., Overman, L.M., Soucy, A., Goetze, S., Autism Sequencing, C., et al., 2019.Recessive gene disruptions in autism spectrum disorder. Nat. Genet. 51, 1092-1098.
    Du, Y., Li, Z., Liu, Z., Zhang, N., Wang, R., Li, F., Zhang, T., Jiang, Y., Zhi, X., Wang, Z., et al., 2020. Nonrandom occurrence of multiple de novo coding variants in a proband indicates the existence of an oligogenic model in autism. Genet.Med. 22, 170-180.
    Epilepsy Phenome/Genome Project, Allen, A.S., Berkovic, S.F., Cossette, P., Delanty, N., Dlugos, D., Eichler, E.E., Epstein, M.P., Glauser, T., et al., 2013. De novo mutations in epileptic encephalopathies. Nature 501, 217-221.
    Fazel Darbandi, S., Robinson Schwartz, S.E., Qi, Q., Catta-Preta, R., Pai, E.L., Mandell, J.D., Everitt, A., Rubin, A., Krasnoff, R.A., Katzman, S., et al., 2018.Neonatal Tbr1 dosage controls cortical layer 6 connectivity. Neuron 100, 831-845 e7.
    Fernandez, B.A., Scherer, S.W., 2017. Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Dialogues Clin.Neurosci. 19, 353-371.
    Fischbach, G.D., Lord, C., 2010. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192-195.
    Gandal, M.J., Haney, J.R., Parikshak, N.N., Leppa, V., Ramaswami, G., Hartl, C., Schork, A.J., Appadurai, V., Buil, A., Werge, T.M., et al., 2018a. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.Science 359, 693-697.
    Gandal, M.J., Zhang, P., Hadjimichael, E., Walker, R.L., Chen, C., Liu, S., Won, H., van Bakel, H., Varghese, M., Wang, Y., et al., 2018b. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127.
    Gulsuner, S., Walsh, T., Watts, A.C., Lee, M.K., Thornton, A.M., Casadei, S., Rippey, C., Shahin, H., Consortium on the Genetics of, S, Group, P.S., et al., 2013. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154, 518-529.
    Guo, H., Duyzend, M.H., Coe, B.P., Baker, C., Hoekzema, K., Gerdts, J., Turner, T.N., Zody, M.C., Beighley, J.S., Murali, S.C., et al., 2019. Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genet. Med. 21, 1611-1620.
    Guo, H., Wang, T., Wu, H., Long, M., Coe, B.P., Li, H., Xun, G., Ou, J., Chen, B., Duan, G., et al., 2018. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol. Autism. 9, 64.
    Hamdan, F.F., Srour, M., Capo-Chichi, J.M., Daoud, H., Nassif, C., Patry, L., Massicotte, C., Ambalavanan, A., Spiegelman, D., Diallo, O., et al., 2014. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 10, e1004772.
    He, X., Sanders, S.J., Liu, L., de Rubeis, S., Lim, E.T., Sutcliffe, J.S., Schellenberg, G.D., Gibbs, R.A., Daly, M.J., Buxbaum, J.D., et al., 2013. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet. 9, e1003671.
    Hegarty, I.J., Lazzeroni, L.C., Raman, M.M., Hallmayer, J.F., Cleveland, S.C., Wolke, O.N., Phillips, J.M., Reiss, A.L., Hardan, A.Y., 2019. Genetic and environmental influences on corticostriatal circuits in twins with autism. J. Psychiatry Neurosci. 44, 190030.
    Heyne, H.O., Artomov, M., Battke, F., Bianchini, C., Smith, D.R., Liebmann, N., Tadigotla, V., Stanley, C.M., Lal, D., Rehm, H., et al., 2019. Targeted gene sequencing in 6,994 individuals with neurodevelopmental disorder with epilepsy.Genet. Med. 21, 2496-2503.
    Hoischen, A., Krumm, N., Eichler, E.E., 2014. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat. Neurosci. 17, 764-772.
    Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al., 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216-221.
    Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., Yamrom, B., Lee, Y.H., Narzisi, G., Leotta, A., et al., 2012. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285-299.
    Jakob, B., Kochlamazashvili, G., Japel, M., Gauhar, A., Bock, H.H., Maritzen, T., Haucke, V., 2017. Intersectin 1 is a component of the Reelin pathway to regulate neuronal migration and synaptic plasticity in the hippocampus. Proc. Natl. Acad.Sci. U. S. A. 114, 5533-5538.
    Ji, Y., Azuine, R.E., Zhang, Y., Hou, W., Hong, X., Wang, G., Riley, A., Pearson, C., Zuckerman, B., Wang, X., 2020. Association of cord plasma biomarkers of in utero acetaminophen exposure with risk of attention-deficit/hyperactivity disorder and autism spectrum disorder in childhood. JAMA Psychiatr. 77, 180-189.
    Jiang, Y.H., Yuen, R.K., Jin, X., Wang, M., Chen, N., Wu, X., Ju, J., Mei, J., Shi, Y., He, M., et al., 2013. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am. J. Hum. Genet. 93, 249-263.
    Jin, S.C., Homsy, J., Zaidi, S., Lu, Q., Morton, S., DePalma, S.R., Zeng, X., Qi, H., Chang, W., Sierant, M.C., et al., 2017. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593-1601.
    Kanner, A.M., 2016. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol. 12, 106-116.
    Kearney, H., Byrne, S., Cavalleri, G.L., Delanty, N., 2019. Tackling epilepsy with highdefinition precision medicine: a review. JAMA Neurol. 76, 1109-1116.
    Krumm, N., Turner, T.N., Baker, C., Vives, L., Mohajeri, K., Witherspoon, K., Raja, A., Coe, B.P., Stessman, H.A., He, Z.X., et al., 2015. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 582-588.
    Lek, M., Karczewski, K.J., Minikel, E. v, Samocha, K.E., Banks, E., Fennell, T., O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al., 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291.
    Li, J., Cai, T., Jiang, Y., Chen, H., He, X., Chen, C., Li, X., Shao, Q., Ran, X., Li, Z., et al., 2016. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol. Psychiatr. 21, 298.
    Li, H., Durbin, R., 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589-595.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
    Lelieveld, S.H., Reijnders, M.R., Pfundt, R., Yntema, H.G., Kamsteeg, E.J., de Vries, P., de Vries, B.B., Willemsen, M.H., Kleefstra, T., Lohner, K., et al., 2016. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194-1196.
    Li, J., Hu, S., Zhang, K., Shi, L., Zhang, Y., Zhao, T., Wang, L., He, X., Xia, K., Liu, C., et al., 2019. A comparative study of the genetic components of three subcategories of autism spectrum disorder. Mol. Psychiatr. 24, 1720-1731.
    Li, J., Wang, L., Guo, H., Shi, L., Zhang, K., Tang, M., Hu, S., Dong, S., Liu, Y., Wang, T., et al., 2017a. Targeted sequencing and functional analysis reveal brainsize-related genes and their networks in autism spectrum disorders. Mol. Psychiatr. 22, 1282-1290.
    Li, J., Wang, L., Yu, P., Shi, L., Zhang, K., Sun, Z.S., Xia, K., 2017b. Vitamin D-related genes are subjected to significant de novo mutation burdens in autism spectrum disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 174, 568-577.
    Li, J., Zhao, T., Zhang, Y., Zhang, K., Shi, L., Chen, Y., Wang, X., Sun, Z., 2018.Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 46, 7793-7804.
    Lim, E.T., Raychaudhuri, S., Sanders, S.J., Stevens, C., Sabo, A., MacArthur, D.G., Neale, B.M., Kirby, A., Ruderfer, D.M., Fromer, M., et al., 2013. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron 77, 235-242.
    Lim, E.T., Uddin, M., de Rubeis, S., Chan, Y., Kamumbu, A.S., Zhang, X., D’Gama, A.M., Kim, S.N., Hill, R.S., Goldberg, A.P., et al., 2017. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci. 20, 1217-1224.
    Liu, L., Sabo, A., Neale, B.M., Nagaswamy, U., Stevens, C., Lim, E., Bodea, C.A., Muzny, D., Reid, J.G., Banks, E., et al., 2013. Analysis of rare, exonic variation amongst subjects with autism spectrum disorders and population controls. PLoS Genet. 9, e1003443.
    Lugo-Marín, J., Mágan-Maganto, M., Rivero-Santana, A., Cuellar-Pompa, L., Alviani, M., Jenaro-Rio, C., Díez, E., Canal-Bedia, R., 2019. Prevalence of psychiatric disorders in adults with autism spectrum disorder: a systematic review and meta-analysis. Res. Autism Spectr. Disord. 59, 22-33.
    Matson, J.L., Shoemaker, M., 2009. Intellectual disability and its relationship to autism spectrum disorders. Res. Dev. Disabil. 30, 1107-1114.
    Neale, B.M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K.E., Sabo, A., Lin, C.F., Stevens, C., Wang, L.S., Makarov, V., et al., 2012. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242-245.
    Nguyen, H.T., Bryois, J., Kim, A., Dobbyn, A., Huckins, L.M., Munoz-Manchado, A.B., Ruderfer, D.M., Genovese, G., Fromer, M., Xu, X., et al., 2017. Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med. 9, 114.
    Notwell, J.H., Heavner, W.E., Darbandi, S.F., Katzman, S., McKenna, W.L., OrtizLondono, C.F., Tastad, D., Eckler, M.J., Rubenstein, J.L., McConnell, S.K., et al., 2016. TBR1 regulates autism risk genes in the developing neocortex. Genome Res. 26, 1013-1022.
    O’Roak, B.J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B.P., Levy, R., Ko, A., Lee, C., Smith, J.D., et al., 2012. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246-250.
    Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S., Goldstein, D.B., 2013. Genic intolerance to functional variation and the interpretation of personal genomes.PLoS Genet. 9, e1003709.
    Sabus, A., Feinstein, J., Romani, P., Goldson, E., Blackmer, A., 2019. Management of self-injurious behaviors in children with neurodevelopmental disorders: a pharmacotherapy overview. Pharmacotherapy 39, 645-664.
    Sanders, S.J., He, X., Willsey, A.J., Ercan-Sencicek, A.G., Samocha, K.E., Cicek, A.E., Murtha, M.T., Bal, V.H., Bishop, S.L., Dong, S., et al., 2015. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci.Neuron 87, 1215-1233.
    Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., Raubeson, M.J., Willsey, A.J., Ercan-Sencicek, A.G., DiLullo, N.M., Parikshak, N.N., Stein, J.L., et al., 2012. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237-241.
    Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., de Rubeis, S., An, J.Y., Peng, M., Collins, R., Grove, J., Klei, L., et al., 2020. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568-584 e23.
    Sierra-Arregui, T., Llorente, J., Gimenez Minguez, P., Tonnesen, J., Penagarikano, O., 2020. Neurobiological mechanisms of autism spectrum disorder and epilepsy, insights from animal models. Neuroscience 445, 69-82.
    Stessman, H.A., Xiong, B., Coe, B.P., Wang, T., Hoekzema, K., Fenckova, M., Kvarnung, M., Gerdts, J., Trinh, S., Cosemans, N., et al., 2017. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515-526.
    Strasser, L., Downes, M., Kung, J., Cross, J.H., de Haan, M., 2018. Prevalence and risk factors for autism spectrum disorder in epilepsy: a systematic review and meta-analysis. Dev. Med. Child Neurol. 60, 19-29.
    Sullivan, P.F., Geschwind, D.H., 2019. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162-183.
    Takata, A., Miyake, N., Tsurusaki, Y., Fukai, R., Miyatake, S., Koshimizu, E., Kushima, I., Okada, T., Morikawa, M., Uno, Y., et al., 2018. Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder. Cell Rep. 22, 734-747.
    Talkowski, M.E., Rosenfeld, J.A., Blumenthal, I., Pillalamarri, V., Chiang, C., Heilbut, A., Ernst, C., Hanscom, C., Rossin, E., Lindgren, A.M., et al., 2012.
    Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149, 525-537.
    Taylor, J.L., Debost, J.P.G., Morton, S.U., Wigdor, E.M., Heyne, H.O., Lal, D., Howrigan, D.P., Bloemendal, A., Larsen, J.T., Kosmicki, J.A., et al., 2019.Paternal-age-related de novo mutations and risk for five disorders. Nat. Commun. 10, 3043.
    Toma, C., Torrico, B., Hervas, A., Valdes-Mas, R., Tristan-Noguero, A., Padillo, V., Maristany, M., Salgado, M., Arenas, C., Puente, X.S., et al., 2014. Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations. Mol. Psychiatr. 19, 784-790.
    Wang, T., Guo, H., Xiong, B., Stessman, H.A., Wu, H., Coe, B.P., Turner, T.N., Liu, Y., Zhao, W., Hoekzema, K., et al., 2016. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat. Commun. 7, 13316.
    Wang, T., Hoekzema, K., Vecchio, D., Wu, H., Sulovari, A., Coe, B.P., Gillentine, M.A., Wilfert, A.B., Perez-Jurado, L.A., Kvarnung, M., et al., 2020. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat. Commun. 11, 4932.
    Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
    Tripathi, S., Pohl, M.O., Zhou, Y., Rodriguez-Frandsen, A., Wang, G., Stein, D.A., Moulton, H.M., DeJesus, P., Che, J., Mulder, L.C., et al., 2015. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723-735.
    Wang, Y., Du, X., Bin, R., Yu, S., Xia, Z., Zheng, G., Zhong, J., Zhang, Y., Jiang, Y.H., Wang, Y., 2017. Genetic variants identified from epilepsy of unknown etiology in Chinese children by targeted exome sequencing. Sci. Rep. 7, 40319.
    Wang, Y., Zeng, C., Li, J., Zhou, Z., Ju, X., Xia, S., Li, Y., Liu, A., Teng, H., Zhang, K., et al., 2018. PAK2 haploinsufficiency results in synaptic cytoskeleton impairment and autism-related behavior. Cell Rep. 24, 2029-2041.
    Wu, J., Yu, P., Jin, X., Xu, X., Li, J., Li, Z., Wang, M., Wang, T., Wu, X., Jiang, Y., et al., 2018. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing. J. Genet. Genomics 45, 527-538.
    Xia, L., Ou, J., Li, K., Guo, H., Hu, Z., Bai, T., Zhao, J., Xia, K., Zhang, F., 2020.Genome-wide association analysis of autism identified multiple loci that have been reported as strong signals for neuropsychiatric disorders. Autism Res. 13, 382-396.
    Xia, L., Xia, K., Weinberger, D.R., Zhang, F.Y., 2019. Common genetic variants shared among five major psychiatric disorders: a large-scale genome-wide combined analysis. Glob. Clin. Transl. Res. 1, 21-30.
    Xu, B., Ionita-Laza, I., Roos, J.L., Boone, B., Woodrick, S., Sun, Y., Levy, S., Gogos, J.A., Karayiorgou, M., 2012. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat. Genet. 44, 1365-1369.
    Xu, B., Roos, J.L., Dexheimer, P., Boone, B., Plummer, B., Levy, S., Gogos, J.A., Karayiorgou, M., 2011. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43, 864-868.
    Xu, X., Wells, A.B., O’Brien, D.R., Nehorai, A., Dougherty, J.D., 2014. Cell typespecific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J. Neurosci. 34, 1420-1431.
    Yan, H., Shi, Z., Wu, Y., Xiao, J., Gu, Q., Yang, Y., Li, M., Gao, K., Chen, Y., Yang, X., et al., 2019. Targeted next generation sequencing in 112 Chinese patients with intellectual disability/developmental delay: novel mutations and candidate gene.BMC Med. Genet. 20, 80.
    Yuen, C.R.K., Merico, D., Bookman, M., Howe, L.J., Thiruvahindrapuram, B., Patel, R.v, Whitney, J., Deflaux, N., Bingham, J., Wang, Z., et al., 2017. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602-611.
    Yuen, R.K., Merico, D., Cao, H., Pellecchia, G., Alipanahi, B., Thiruvahindrapuram, B., Tong, X., Sun, Y., Cao, D., Zhang, T., et al., 2016. Genome-wide characteristics of de novo mutations in autism. NPJ Genom. Med. 1, 160271-1602710.
    Yuen, R.K., Thiruvahindrapuram, B., Merico, D., Walker, S., Tammimies, K., Hoang, N., Chrysler, C., Nalpathamkalam, T., Pellecchia, G., Liu, Y., et al., 2015. Whole-genome sequencing of quartet families with autism spectrum disorder.Nat. Med. 21, 185-191.
    Zhang, L., Huang, T., Teaw, S., Nguyen, L.H., Hsieh, L.S., Gong, X., Burns, L.H., Bordey, A., 2020a. Filamin A inhibition reduces seizure activity in a mouse model of focal cortical malformations. Sci. Transl. Med. 12, eaay0289.
    Zhang, Y., Li, N., Li, C., Zhang, Z., Teng, H., Wang, Y., Zhao, T., Shi, L., Zhang, K., Xia, K., et al., 2020b. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl. Psychiatry 10, 4.
    Zhao, G., Li, K., Li, B., Wang, Z., Fang, Z., Wang, X., Zhang, Y., Luo, T., Zhou, Q., Wang, L., et al., 2020. Gene4 Denovo: an integrated database and analytic platform for de novo mutations in humans. Nucleic Acids Res. 48, D913-D926.
    Zheng, Z., Zheng, P., Zou, X., 2018. Association between schizophrenia and autism spectrum disorder: a systematic review and meta-analysis. Autism Res. 11, 1110-1119.
    Zhou, H., Xu, X., Yan, W., Zou, X., Wu, L., Luo, X., Li, T., Huang, Y., Guan, H., Chen, X., et al., 2020. Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12years. Neurosci. Bull. 36, 961-971.
    Zhou, W.Z., Zhang, J., Li, Z., Lin, X., Li, J., Wang, S., Yang, C., Wu, Q., Ye, A.Y., Wang, M., et al., 2019a. Targeted resequencing of 358 candidate genes for autism spectrum disorder in a Chinese cohort reveals diagnostic potential and genotype-phenotype correlations. Hum. Mutat. 40, 801-815.
    Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., Chanda, S.K., 2019b. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat.Commun. 10, 1523.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads (10) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return