[1] |
Buss, L.F., Prete, C.A., Abrahim, C.M.M., Mendrone, A., Salomon, T., de Almeida-Neto, C., Franca, R.F.O., Belotti, M.C., Carvalho, M.P.S.S., Costa, A.G., et al., 2021. Three-quarters attack rate of SARS-CoV-2 in the Brazilian amazon during a largely unmitigated epidemic. Science 371, 288-292.
|
[2] |
Chen, R.E., Zhang, X., Case, J.B., Winkler, E.S., Liu, Y., VanBlargan, L.A., Liu, J., Errico, J.M., Xie, X., Suryadevara, N., et al., 2021. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. DOI: 10.1038/s41591-021-01294-w
|
[3] |
Collier, D.A., De Marco, A., Ferreira, I.A, Meng, B., Datir, R., Walls, A.C., Kemp S. S.A., Bassi J., Pinto D,. Fregni C.S., et al., 2021. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature DOI: 10.1038/s41586-021-03412-7.
|
[4] |
Edara, V.V., Floyd, K., Lai, L., Gardner, M., Hudson, W., Piantadosi, A., Waggoner, J.J., Babiker, A., Ahmed, R., Xie, X., et al., 2021. Infection and mRNA-1273 vaccine antibodies neutralize SARS-CoV-2 UK variant. medRxiv DOI: 10.1101/2021.02.02.21250799.
|
[5] |
Eguia, R., Crawford, K.H.D., Stevens-Ayers, T., Kelnhofer-Millevolte, L., Greninger, A.L., Englund, J.A., Boeckh, M.J., Bloom, J.D., 2020. A human coronavirus evolves antigenically to escape antibody immunity. bioRxiv DOI: 10.1101/2020.12.17.423313.
|
[6] |
Fang, S., Liu, S., Shen, J., Lu, A.Z., Zhang, Y., Li, K., Liu, J., Yang, L., Hu, C.-D.,Wan, J., 2021. Updated SARS-CoV-2 single nucleotide variants and mortality association. DOI: 10.1101/2021.01.29.21250757.
|
[7] |
Galloway SE, P.P., MacCannell DR 2020. Emergence of SARS-CoV-2 B.1.1.7 lineage - United States, December 29, 2020-January 12, 2021, MMWR Morb Mortal Wkly Rep, 70, 95-99.
|
[8] |
Garcia-Beltran, W.F., Lam, E.C., Denis, K.S., Nitido, A.D., Garcia, Z.H., Hauser, B.M., Feldman, J., Pavlovic, M.N., Gregory, D.J., Poznansky, M.C., et al., 2021. Circulating SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. medRxiv DOI: 10.1101/2021.02.14.21251704.
|
[9] |
Greaney, A.J., Loes, A.N., Crawford, K.H.D., Starr, T.N., Malone, K.D., Chu, H.Y., Bloom, J.D., 2021. Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies. BioRxiv DOI: 10.1101/2020.12.31.425021.
|
[10] |
Haynes, W.A., Kamath, K., Lucas, C., Shon, J., Iwasaki, A., 2021. Impact of B.1.1.7 variant mutations on antibody recognition of linear SARS-CoV-2 epitopes. medRxiv DOI: 10.1101/2021.01.06.20248960.
|
[11] |
Hodcroft, E.B., Domman, D.B., Oguntuyo, K., Snyder, D.J., Diest, M.V., Densmore, K.H., Schwalm, K.C., Femling, J., Carroll, J.L., Scott, R.S., et al., 2021. Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting amino acid position 677. MedRxiv DOI: 10.1101/2021.02.12.21251658.
|
[12] |
Horby, P., Huntley, C., Davies, N., Edmunds, J., Ferguson, N., Medley, G., Semple, C.. 2021. NERVTAG: note on B.1.1.7 severity, 20 January 202, Scientific Advisory Group for Emergencies, GOV.UK. https://www.gov.uk/government/publications/nervtag-note-on-b117-severity-20-january-2021.
|
[13] |
Huang, B., Dai, L., Wang, H., Hu, Z., Yang, X., Tan, W.,Gao, G.F., 2021. Neutralization of SARS-CoV-2 VOC 501Y.V2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines. BioRxiv DOI: 10.1101/2021.02.01.429069.
|
[14] |
Jangra, S., Ye, C., Rathnasinghe, R., Stadlbauer, D., Krammer, F., Simon, V., Martinez-Sobrido, L., Garcia-Sastre, A.,Schotsaert, M., 2021. The E484K mutation in the SARS-CoV-2 spike protein reduces but does not abolish neutralizing activity of human convalescent and post-vaccination sera. medRxiv DOI: 10.1101/2021.01.26.21250543.
|
[15] |
Johnson & Johnson announces single-shot Janssen COVID-19 vaccine candidate met primary endpoints in interim analysis of its Phase 3 ENSEMBLE trial https://www.janssen.com/johnson-johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints
|
[16] |
Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., et al., 2020. Tracking changes in SARS-CoV-2 Spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812-827.
|
[17] |
Leung, K., Shum, M.H.H., Leung, G.M., Lam, T.T.Y., Wu, J.T., 2020. Early empirical assessment of the N501Y mutant strains of SARS-CoV-2 in the united kingdom, October to November 2020. MedRxiv DOI: 10.1101/2020.12.20.20248581.
|
[18] |
Li, Q., Wu, J., Nie, J., Zhang, L., Hao, H., Liu, S., Zhao, C., Zhang, Q., Liu, H., Nie, L., et al., 2020. The impact of mutations in SARS-CoV-2 Spike on viral infectivity and antigenicity. Cell 182, 1284-1294.
|
[19] |
Li, R., Ma, X., Deng, J., Chen, Q., Liu, W., Peng, Z., Qiao, Y., Lin, Y., He, X.,Zhang, H., 2021. Differential efficiencies to neutralize the novel mutants B.1.1.7 and 501Y.V2 by collected sera from convalescent COVID-19 patients and RBD nanoparticle-vaccinated rhesus macaques. Cell. Mol. Immunol. DOI: 10.1038/s41423-021-00641-8
|
[20] |
Liu, Y., Liu, J., Xia, H., Zhang, X., Fontes-Garfias, C.R., Swanson, K.A., Cai, H., Sarkar, R., Chen, W., Cutler, M., et al., 2021a. Neutralizing activity of BNT162b2-elicited serum. N. Engl. J. Med. DOI: 10.1056/NEJMc2102017.
|
[21] |
Liu, Z., VanBlargan, L.A., Bloyet, L.-M., Rothlauf, P.W., Chen, R.E., Stumpf, S., Zhao, H., Errico, J.M., Theel, E.S., Liebeskind, M.J., et al., 2021b. Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. bioRxiv, DOI: 10.1101/2020.11.06.372037.
|
[22] |
Ma, X., Zou, F., Yu, F., Li, R., Yuan, Y., Zhang, Y., Zhang, X., Deng, J., Chen, T., Song, Z., et al., 2020. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity 53, 1315-1330.
|
[23] |
Muik, A., Wallisch, A.-K., Sanger, B., Swanson, K.A., Muhl, J., Chen, W., Cai, H., Sarkar, R., Tureci, O., Dormitzer, P.R., et al., 2021. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 371, 1152-1153.
|
[24] |
Quan, F.S., Steinhauer, D., Huang, C., Ross, T.M., Compans, R.W., Kang, S.-M., 2008. A bivalent influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine 26, 3352-3361.
|
[25] |
Rees-Spear, C., Muir, L., Griffith, S.A., Heaney, J., Aldon, Y., Snitselaar, J.L., Thomas, P., Graham, C., Seow, J., Lee, N., et al., 2021. The impact of spike mutations on SARS-CoV-2 neutralization. bioRxiv DOI;10.1101/2021.01.15.426849.
|
[26] |
Resende, P.C., Bezerra, J.F., Vasconcelos, R.H.T, Arantes, I., Appolinario, L., Mendonca, A.C., Paixao, A.C., Rodrigues, A.C.D., Silva, T., Rocha, A.S., et al 2021. Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil, 2020, Virological. https://virological.org/t/spike-e484k-mutation-in-the-first-sars-cov-2-reinfection-case-confirmed-in-brazil-2020/584
|
[27] |
Saadat, S., Tehrani, Z.R., Logue, J., Newman, M., Frieman, M.B., Harris, A.D.,Sajadi, M.M., 2021. Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2. JAMA. DOI: 10.1001/jama.2021.3341.
|
[28] |
Shen, X., Tang, H., McDanal, C., Wagh, K., Fischer, W., Theiler, J., Yoon, H., Li, D., Haynes, B.F., Sanders, K.O., et al., 2021. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral Spike vaccines. Cell Host Microbe. DOI: 10.1016/j.chom.2021.03.002.
|
[29] |
Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., Lalloo, U., Masilela, M.S.L., Moodley, D., Hanley, S., et al., 2021. Preliminary efficacy of the NVX-CoV2373 covid-19 vaccine against the B.1.351 variant. medRxiv DOI: 10.1101/2021.02.25.21252477.
|
[30] |
Spencer, A.J., McKay, P.F., Belij-Rammerstorfer, S., Ulaszewska, M., Bissett, C.D., Hu, K., Samnuan, K., Wright, D., Sharpe, H.R., Gilbride, C., et al., 2021. Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce superior immune responses than single dose vaccine regimens in mice. bioRxiv DOI: 10.1101/2021.01.28.428665.
|
[31] |
Stamatatos, L., Czartoski, J., Wan, Y.-H., Homad, L.J., Rubin, V., Glantz, H., Neradilek, M., Seydoux, E., Jennewein, M.F., MacCamy, A.J., et al., 2021. A single mRNA immunization boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. medRxiv DOI: 10.1101/2021.02.05.21251182.
|
[32] |
Sun, S., Gu, H., Cao, L., Chen, Q., Yang, G., Li, R.-T., Fan, H., Ye, Q., Deng, Y.-Q., Song, X., et al., 2020. Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2. BioRxiv DOI: 10.1101/2020.11.10.377333.
|
[33] |
Tada, T., Dcosta, B.M., Samanovic-Golden, M., Herati, R.S., Cornelius, A., Mulligan, M.J.,Landau, N.R., 2021. Neutralization of viruses with european, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv DOI: 10.1101/2021.02.05.430003.
|
[34] |
Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E.J., Msomi, N., et al., 2020. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv DOI: 10.1101/2020.12.21.20248640.
|
[35] |
Thomson, E.C., Rosen, L.E., Shepherd, J.G., Spreafico, R., da Silva Filipe, A., Wojcechowskyj, J.A., Davis, C., Piccoli, L., Pascall, D.J., Dillen, J., et al., 2021. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184, 1171-1187.
|
[36] |
Volz, E., Mishra, S., Chand, M., Barrett, J.C., Johnson, R., Geidelberg, L., Hinsley, W.R., Laydon, D.J., Dabrera, G., O’Toole, A., et al., 2021. Transmission of SARS-CoV-2 lineage B.1.1.7 in england: Insights from linking epidemiological and genetic data. medRxiv DOI: 10.1101/2020.12.30.20249034.
|
[37] |
Voysey, M., Costa Clemens, S.A., Madhi, S.A., Weckx, L.Y., Folegatti, P.M., Aley, P.K., Angus, B., Baillie, V.L., Barnabas, S.L., Bhorat, Q.E., et al., 2021. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 397, 881-891.
|
[38] |
Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C.O., Finkin, S., Schaefer-Babajew, D., Cipolla, M., Gaebler, C., Lieberman, J.A., et al., 2021. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature DOI: 10.1038/s41586-021-03324-6.
|
[39] |
WHO 2021. Covid-19 weekly epidemiological update, Data as received by who from national authorities, as of 21 february 2021, 10 am cet. in COVID-19 Weekly Epidemiological Update World Health Organization, World Health Organization.
|
[40] |
Wibmer, C.K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B.E., de Oliveira, T., Vermeulen, M., van der Berg, K., et al., 2021. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. DOI: 10.1038/s41591-021-01285-x
|
[41] |
Wise, J., 2021. Covid-19: The E484K mutation and the risks it poses. BMJ 372, n359.
|
[42] |
Zhang, W., Davis, B.D., Chen, S.S., Sincuir Martinez, J.M., Plummer, J.T.,Vail, E., 2021. Emergence of a novel SARS-CoV-2 variant in southern California. JAMA. e211612.
|
[43] |
Zhou, D., Dejnirattisai, W., Supasa, P., Liu, C., Mentzer, A.J., Ginn, H.M., Zhao, Y., Duyvesteyn, H.M.E., Tuekprakhon, A., Nutalai, R., et al., 2021. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine induced sera. Cell DOI: 10.1016/j.cell.2021.02.03
|