5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 3
Mar.  2021
Turn off MathJax
Article Contents

Genomes of 12 fig wasps provide insights into the adaptation of pollinators to fig syconia

doi: 10.1016/j.jgg.2021.02.010
More Information
  • Corresponding author: E-mail address: xiaojh@nankai.edu.cn (Jinhua Xiao); E-mail address: huangdw@ioz.ac.cn (Dawei Huang)
  • Received Date: 2021-01-19
  • Accepted Date: 2021-02-28
  • Rev Recd Date: 2021-02-14
  • Available Online: 2021-03-29
  • Publish Date: 2021-03-20
  • Figs and fig pollinators are one of the few classic textbook examples of obligate pollination mutualism. The specific dependence of fig pollinators on the relatively safe living environment with sufficient food sources in the enclosed fig syconia implies that they are vulnerable to habitat changes. However, there is still no extensive genomic evidence to reveal the evolutionary footprint of this long-term mutually beneficial symbiosis in fig pollinators. In fig syconia, there are also non-pollinator species. The non-pollinator species differ in their evolutionary and life histories from pollinators. We conducted comparative analyses on 11 newly sequenced fig wasp genomes and one previously published genome. The pollinators colonized the figs approximately 66.9 million years ago, consistent with the origin of host figs. Compared with non-pollinators, many more genes in pollinators were subject to relaxed selection. Seven genes were absent in pollinators in response to environmental stress and immune activation. Pollinators had more streamlined gene repertoires in the innate immune system, chemosensory toolbox, and detoxification system. Our results provide genomic evidence for the differentiation between pollinators and nonpollinators. The data suggest that owing to the long-term adaptation to the fig, some genes related to functions no longer required are absent in pollinators.
  • Contributed equally to this work.
  • loading
  • [1]
    Alexandre, L., Burns, P.D., Mark, B., 2014. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res.. 42, e119.
    [2]
    Arguello, J.R., Cardoso-Moreira, M., Grenier, J.K., Gottipati, S., Clark, A.G., Benton, R., 2016. Extensive local adaptation within the chemosensory system following Drosophila melanogaster's global expansion. Nat. Commun. 7, 11855.
    [3]
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al., 2000. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25-29.
    [4]
    Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.. 27, 573-580.
    [5]
    Berg, J.M., Lee, C., Chen, L., Galvan, L., Cepeda, C., Chen, J.Y., Penagarikano, O., Stein, J.L., Li, A., Oguro-Ando, A., et al., 2015. JAKMIP1, a novel regulator of neuronal translation, modulates synaptic function and autistic-like behaviors in mouse. Neuron 88, 1173-1191.
    [6]
    Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194-1202.
    [7]
    Chen, C., Chen, K., Su, T., Zhang, B., Li, G., Pan, J., Si, M., 2019. Myo-inositol-1-phosphate synthase (Ino-1) functions as a protection mechanism in Corynebacterium glutamicum under oxidative stress. Microbiologyopen 8, e00721.
    [8]
    Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al., 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569.
    [9]
    Clemmons, A.W., Lindsay, S.A., Wasserman, S.A., 2015. An effector peptide family required for Drosophila Toll-mediated immunity. PLoS Path. 11, e1004876.
    [10]
    Cook, J.M., Rasplus, J.Y., 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol. 18, 241-248.
    [11]
    Cruaud, A., Jabbour-Zahab, R., Genson, G., Cruaud, C., Couloux, A., Kjellberg, F., Noort, S.V., Rasplus, J.Y., 2010. Laying the foundations for a new classification of Agaonidae (Hymenoptera: chalcidoidea), a multilocus phylogenetic approach. Cladistics 26, 359-387.
    [12]
    Cruaud, A., Ronsted, N., Chantarasuwan, B., Chou, L.S., Clement, W.L., Couloux, A., Cousins, B., Genson, G., Harrison, R.D., Hanson, P.E., 2012. An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Syst. Biol. 61, 1029-1047.
    [13]
    El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, G.A., Smart, A., et al., 2018. The Pfam protein families database in 2019. Nucleic Acids Res.. 47, D427-D432.
    [14]
    Erturk-Hasdemir, D., Broemer, M., Leulier, F., Lane, W.S., Paquette, N., Hwang, D., Kim, C.H., Stoven, S., Meier, P., Silverman, N., 2009. Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes. Proc. Natl. Acad. Sci. U. S. A. 106, 9779-9784.
    [15]
    Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321.
    [16]
    Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Jr, R.K.S., Hannick, L.I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res.. 31, 5654-5666.
    [17]
    Haas, B.J., Salzberg, S.L., Wei, Z., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R., Wortman, J.R., 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol.. 9, R7.
    [18]
    Hackl, T., Hedrich, R., Schultz, J., Forster, F., 2014. Proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3004-3011.
    [19]
    Heraty, J.M., Burks, R.A., Cruaud, A., Gibson, G.A.P., Liljeblad, J., Munro, J., Rasplus, J.Y., Delvare, G., Jansta, P., Gumovsky, A., 2013. A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics 29, 466-542.
    [20]
    Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S., 2017. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522.
    [21]
    Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T., Mende, D.R., Sunagawa, S., Kuhn, M., et al., 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res.. 44, D286-D293.
    [22]
    Huising, M.O., Flik, G., 2005. The remarkable conservation of corticotropin-releasing hormone (CRH)-binding protein in the honeybee (Apis mellifera) dates the CRH system to a common ancestor of insects and vertebrates. Endocrinology 146, 2165-2170.
    [23]
    Ishida, Y., Leal, W.S., 2005. Rapid inactivation of a moth pheromone. Proc. Natl. Acad. Sci. U. S. A. 102, 14075-14079.
    [24]
    Isin, E.M., Guengerich, F.P., 2007. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim. Biophys. Acta 1770, 314-329.
    [25]
    Johnson, A.D., Handsaker, R.E., Pulit, S.L., Nizzari, M.M., O'Donnell, C.J., Bakker, P.I.W.D., 2008. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938.
    [26]
    Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al., 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236-1240.
    [27]
    Jousselin, E., van Noort, S., Berry, V., Rasplus, J.Y., Roensted, N., Erasmus, J.C.,Greeff, J.M., 2008. One fig to bind them all: host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution 62, 1777-1797.
    [28]
    Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res.. 28, 27-30.
    [29]
    Kapitonov, V., Jurka, J., 2008. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 9, 411-412.
    [30]
    Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.
    [31]
    Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S.O., Grau, J., 2017. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinf. 19, 189.
    [32]
    Keilwagen, J., Wenk, M., Erickson, J.L., Schattat, M.H., Grau, J., Hartung, F., 2016. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res.. 44, e89-e89.
    [33]
    Keller, O., Kollmar, M., Stanke, M., Waack, S., 2011. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27, 757-763.
    [34]
    Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357.
    [35]
    Kirkness, E.F., Haas, B.J., Sun, W., Braig, H.R., Perotti, M.A., Clark, J.M., Lee, S.H., Robertson, H.M., Kennedy, R.C., Elhaik, E., et al., 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc. Natl. Acad. Sci. U. S. A. 107, 12168-12173.
    [36]
    Kleino, A., Silverman, N., 2014. The Drosophila IMD pathway in the activation of the humoral immune response. Dev. Comp. Immunol. 42, 25-35.
    [37]
    Konrad M., Grasse A.V., Tragust S., Cremer S. , 2015. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proc. Biol. Sci. 282, 20141976.
    [38]
    Kulmuni, J., Wurm, Y., Pamilo, P., 2013. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity 110, 538-547.
    [39]
    Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743.
    [40]
    Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., Hoffmann, J.A., 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983.
    [41]
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    [42]
    Li, L., Christian, J., Stoeckert, J., Roos, D.S., 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res.. 13, 2178-2189.
    [43]
    Li, S., Zhu, S., Jia, Q., Yuan, D., Ren, C., Li, K., Liu, S., Cui, Y., Zhao, H., Cao, Y., et al., 2018. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat. Commun. 9, 1008.
    [44]
    Li, X., Schuler, M.A., Berenbaum, M.R., 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231-253.
    [45]
    Lu, Y., Su, F., Li, Q., Zhang, J., Li, Y., Tang, T., Hu, Q., Yu, X.Q., 2020. Pattern recognition receptors in Drosophila immune responses. Dev. Comp. Immunol. 102, 103468.
    [46]
    Majoros, W.H., Pertea, M., Salzberg, S.L., 2004. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878-2879.
    [47]
    Marcais, G., Kingsford, C., 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764-770.
    [48]
    Mayer, E., 1963. Animal Species and Evolution. Belknap, Cambridge.
    [49]
    Miyamoto, T., Slone, J., Song, X., Amrein, H., 2012. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113-1125.
    [50]
    Myllymaki, H., Ramet, M., 2014. JAK/STAT pathway in Drosophila immunity. Scand. J. Immunol. 79, 377-385.
    [51]
    Myllymaki, H., Valanne, S., Ramet, M., 2014. The Drosophila Imd signaling pathway. J. Immunol. 192, 3455-3462.
    [52]
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.
    [53]
    Niu, L.M., Hu, H.Y., Huang, D.W., Fu, Y.G., Peng, Z.Q., 2009. Brood size: a major factor influencing male dimorphism in the non-pollinating fig wasp Sycobia sp. Ecol. Entomol. 34, 696-701.
    [54]
    Pan, S., Li, K.E., Huang, W., Zhong, H., Wu, H., Wang, Y., Zhang, H., Cai, Z., Guo, H., Chen, X., et al., 2020. Arabidopsis DXO1 possesses deNADding and exonuclease activities and its mutation affects defense-related and photosynthetic gene expression. J. Integr. Plant Biol. 62, 967-983.
    [55]
    Peters, R.S., Niehuis, O., Gunkel, S., Blaser, M., Mayer, C., Podsiadlowski, L., Kozlov, A., Donath, A., van Noort, S., Liu, S., et al., 2018. Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Mol. Phylogen. Evol. 120, 286-296.
    [56]
    Pond, S.L., Frost, S.D., Muse, S.V., 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676-679.
    [57]
    Pruitt, K.D., Tatusova, T., Maglott, D.R., 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res.. 35, D61-D65.
    [58]
    Rasplus, J.Y., Kerdelhue, C., Clainche, I.L., Mondor, G., 1998. Molecular phylogeny of fig wasps Agaonidae are not monophyletic. Compte Rendu de l’Academie des Sciences de Paris 321, 517-526.
    [59]
    Roensted, N., Weiblen, G.D., Cook, J.M., Salamin, N., Machado, C.A., Savolainen, V., 2005. 60 million years of co-divergence in the fig-wasp symbiosis. Proc. Natl. Acad. Sci. U. S. A. 272, 2593-2599.
    [60]
    Rosetto, M., Engstrom, Y., Baldari, C.T., Telford, J.L., Hultmark, D., 1995. Signals from the IL-1 receptor homolog, Toll, can activate an immune response in a Drosophila hemocyte cell line. Biochem. Biophys. Res. Commun. 209, 111-116.
    [61]
    Sanchez-Martin, P., Komatsu, M., 2020. Physiological stress response by selective autophagy. J. Mol. Biol. 432, 53-62.
    [62]
    Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M., 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210.
    [63]
    Stronach, B., 2005. Dissecting JNK signaling, one KKKinase at a time. Dev. Dyn. 232, 575-584.
    [64]
    Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D., Pimentel, H., Salzberg, S., Rinn, J., Pachter, L., 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578.
    [65]
    Gerard, T., Jose, C., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577.
    [66]
    The UniProt Consortium, 2015. UniProt: a hub for protein information. Nucleic Acids Res.. 43, 204-212.
    [67]
    Valanne, S., Wang, J.H., Ramet, M., 2011. The Drosophila Toll signaling pathway. J. Immunol. 186, 649-656.
    [68]
    Vurture, G.W., Sedlazeck, F.J., Nattestad, M., Underwood, C.J., Fang, H., Gurtowski, J., Schatz, M.C., 2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202-2204.
    [69]
    Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One 9, e112963.
    [70]
    Weiblen, G.D., 2002. How to be a fig wasp. Annu. Rev. Entomol. 47, 299-330.
    [71]
    Wertheim, J.O., Murrell, B., Smith, M.D., Kosakovsky Pond, S.L., Scheffler, K., 2015. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820-832.
    [72]
    Wicker, C., Reichhart, J.M., Hoffmann, D., Hultmark, D., Samakovlis, C., Hoffmann, J.A., 1990. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J. Biol. Chem. 265, 22493-22498.
    [73]
    Xiao, J.H., Yue, Z., Jia, L.Y., Yang, X.H., Niu, L.H., Wang, Z., Zhang, P., Sun, B.F., He, S.M., Li, Z., et al., 2013. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biol.. 14, R141.
    [74]
    Xin, Z.Z., Hou, H.X., Wei, X.Q., Xiao, J.H., Huang, D.W., 2020. Transcriptome analysis of the male polymorphisms of fig wasp species Philotrypesis tridentata. Int. J. Biol. Macromol. 164, 1665-1674.
    [75]
    Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591.
    [76]
    Zhang, D., Gao, F., Jakovlic, I., Zou, H., Zhang, J., Li, W.X., Wang, G.T., 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355.
    [77]
    Zhou, M.J., Xiao, J.H., Bian, S.N., Li, Y.W., Niu, L.M., Hu, H.Y., Wu, W.S., Murphy, R.W., Huang, D.W., 2012. Molecular approaches identify known species, reveal cryptic species and verify host specificity of Chinese Philotrypesis (Hymenoptera: Pteromalidae). Mol. Ecol. Resour. 12, 598-606.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (141) PDF downloads (15) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return