5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 2
Feb.  2021
Turn off MathJax
Article Contents

Creating future crops: a revolution for sustainable agriculture

doi: 10.1016/j.jgg.2021.02.002
More Information
  • Corresponding author: E-mail address: hxlin@cemps.ac.cn (Hong-Xuan Lin)
  • Received Date: 2021-01-30
  • Accepted Date: 2021-02-02
  • Rev Recd Date: 2021-02-02
  • Available Online: 2021-02-10
  • Publish Date: 2021-02-20
  • loading
  • [1]
    Ammiraju, J.S., Fan, C., Yu, Y., Song, X., Cranston, K.A., Pontaroli, A.C., Lu, F., Sanyal, A., Jiang, N., Rambo, T., et al., 2010. Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J. 63, 430−442.
    [2]
    Bailey-Serres, J., Parker, J.E., Ainsworth, E.A., Oldroyd, G.E.D., and Schroeder, J.I., 2019. Genetic strategies for improving crop yields. Nature 575, 109−118.
    [3]
    Chen, E., Huang, X., Tian, Z., Wing, R.A., and Han, B., 2019a. The genomics of Oryza species provides insights into rice domestication and heterosis. Annu. Rev. Plant Biol. 70, 639−665.
    [4]
    Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C., 2019b. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667−697.
    [5]
    Gao, H., Jin, M., Zheng, X.M., Chen, J., Yuan, D., Xin, Y., Wang, M., Huang, D., Zhang, Z., Zhou, K., et al., 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. U. S. A. 111, 16337−16342.
    [6]
    Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., et al., 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature. 490, 497−501.
    [7]
    Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541−544.
    [8]
    Konishi, S., Izawa, T., Lin, S.Y., Ebana, K., Fukuta, Y., Sasaki, T., and Yano, M., 2006. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392−1396.
    [9]
    Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., and Xu, C., 2018. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160−1163 .
    [10]
    Luo, J., Liu, H., Zhou, T., Gu, B., Huang, X., Shangguan, Y., Zhu, J., Li, Y., Zhao, Y., Wang, Y., et al., 2013. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25, 3360−3376.
    [11]
    Mao, H., Sun, S., Yao, J., Wang, C., Yu, S., Xu, C., Li, X., and Zhang, Q., 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. U. S. A. 107, 19579−19584.
    [12]
    Mohammed, S., Samad, A.A., and Rahmat, Z., 2019. Agrobacterium-mediated transformation of rice: constraints and possible solutions. Rice Science 26, 133−146.
    [13]
    Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., et al., 2002. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701−702.
    [14]
    Stein, J.C., Yu, Y., Copetti, D., Zwickl, D.J., Zhang, L., Zhang, C., Chougule, K., Gao, D., Iwata, A., Goicoechea, J.L., et al., 2018. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 50, 285−296.
    [15]
    Tian, Z., Wang, J.W., Li, J., and Han, B., 2020. Designing future crops: challenges and strategies for sustainable agriculture. Plant J. DOI: 10.1111/tpj.15107.
    [16]
    Van de Peer, Y., Mizrachi, E., and Marchal, K., 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411−424.
    [17]
    Wing, R.A., Purugganan, M.D., and Zhang, Q., 2018. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505−517.
    [18]
    Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., et al., 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761−767.
    [19]
    Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., et al., 2021. A route to de novo domestication of wild allotetraploid rice. Cell DOI: 10.1016/j.cell.2021.01.013.
    [20]
    Zeng, D., Tian, Z., Rao, Y., Dong, G., Yang, Y., Huang, L., Leng, Y., Xu, J., Sun, C., Zhang, G., et al., 2017. Rational design of high-yield and superior-quality rice. Nat. Plants 3, 17031.
    [21]
    Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., et al., 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278−284.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads (9) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return