5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

Crumbs proteins stabilize the cone mosaics of photoreceptors and improve vision in zebrafish

doi: 10.1016/j.jgg.2020.12.002
More Information
  • Corresponding author: E-mail address: jianzou@zju.edu.cn (Jian Zou)
  • Publish Date: 2021-01-20
  • Although the unique organization of vertebrate cone mosaics was first described long ago, both their underlying molecular basis and physiological significance are largely unknown. Here, we demonstrate that Crumbs proteins, the key regulators of epithelial apical polarity, establish the planar cellular polarity of photoreceptors in zebrafish. Via heterophilic Crb2a-Crb2b interactions, the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors. The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors, thereby stabilizing the geometric organization of cone mosaics. Notably, loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation. These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Allison, W.T., Barthel, L.K., Skebo, K.M., Takechi, M., Kawamura, S., and Raymond, P.A., 2010. Ontogeny of cone photoreceptor mosaics in zebrafish. J. Comp. Neurol. 518, 4182-4195.
    [2]
    Alves, C.H., Pellissier, L.P., Vos, R.M., Garcia Garrido, M., Sothilingam, V., Seide, C., Beck, S.C., Klooster, J., Furukawa, T., Flannery, J.G., Verhaagen, J., Seeliger, M.W., Wijnholds, J., 2014. Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa. Hum. Mol. Genet. 23, 3384-3401.
    [3]
    Alves, C.H., Sanz, A.S., Park, B., Pellissier, L.P., Tanimoto, N., Beck, S.C., Huber, G., Murtaza, M., Richard, F., Sridevi Gurubaran, I., Garcia Garrido, M., Levelt, C.N., Rashbass, P., Le Bivic, A., Seeliger, M.W., Wijnholds, J., 2013. Loss of CRB2 in the mouse retina mimics human retinitis pigmentosa due to mutations in the CRB1 gene. Hum. Mol. Genet. 22, 35-50.
    [4]
    Brainard, D.H., 2015. Color and the cone mosaic. Annu. Rev. Vis. Sci. 1, 519-546.
    [5]
    Chen, X., Jiang, C., Yang, D., Sun, R., Wang, M., Sun, H., Xu, M., Zhou, L., Chen, M., Xie, P., Yan, B., Liu, Q., Zhao, C., 2019. CRB2 mutation causes autosomal recessive retinitis pigmentosa. Exp. Eye Res. 180, 164-173.
    [6]
    Chui, T.Y., Song, H., and Burns, S.A., 2008. Individual variations in human cone photoreceptor packing density: variations with refractive error. Invest. Ophthalmol. Vis. Sci. 49, 4679-4687.
    [7]
    Collery R.F. and Link B.A., 2019. Precise short sequence insertion in zebrafish using a CRISPR/Cas9 approach to generate a constitutively soluble Lrp2 protein. Front. Cell Dev. Biol. 7, 167.
    [8]
    Dabir, S., Mangalesh, S., Schouten, J.S., Berendschot, T.T., Kurian, M.K., Kumar, A.K., Yadav, N.K., and Shetty, R., 2015. Axial length and cone density as assessed with adaptive optics in myopia. Indian J. Ophthalmol. 63, 423-426.
    [9]
    den Hollander, A.I., Ghiani, M., de Kok, Y.J., Wijnholds, J., Ballabio, A., Cremers, F.P., and Broccoli, V., 2002. Isolation of Crb1, a mouse homologue of Drosophila crumbs, and analysis of its expression pattern in eye and brain. Mech. Dev. 110, 203-207.
    [10]
    den Hollander, A.I., Roepman, R., Koenekoop, R.K., and Cremers, F.P., 2008. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog. Retin. Eye Res. 27, 391-419.
    [11]
    den Hollander, A.I., ten Brink, J.B., de Kok, Y.J., van Soest, S., van den Born, L.I., van Driel, M.A., van de Pol, D.J., Payne, A.M., Bhattacharya, S.S., Kellner, U., Hoyng, C.B., Westerveld, A., Brunner, H.G., Bleeker-Wagemakers, E.M., Deutman, A.F., Heckenlively, J.R., Cremers, F.P., Bergen, A.A., 1999. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat. Genet. 23, 217-221.
    [12]
    Easter, S.S., Jr, and Hitchcock, P.F., 1986. The myopic eye of the Black Moor goldfish. Vis. Res.. 26, 1831-1833.
    [13]
    Ebarasi, L., Ashraf, S., Bierzynska, A., Gee, H.Y., McCarthy, H.J., Lovric, S., Sadowski, C.E., Pabst, W., Vega-Warner, V., Fang, H., Koziell, A., Simpson, M.A., Dursun, I., Serdaroglu, E., Levy, S., Saleem, M.A., Hildebrandt, F., Majumdar, A., 2015. Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am. J. Hum. Genet. 96, 153-161.
    [14]
    Eom, D.S., Amarnath, S., and Agarwala, S., 2013. Apicobasal polarity and neural tube closure. Dev. Growth Differ. 55, 164-172.
    [15]
    Fang, W, Bonaffini, S, Zou, J, Wang, X, Zhang, C, Tsujimura, T, Kawamura, S, Wei, X, 2013. Characterization of transgenic zebrafish lines that express GFP in the retina, pineal gland, olfactory bulb, hatching gland, and optic tectum. Gene Expression Patterns 13, 150–159.
    [16]
    Fernald, R., 1990. Teleost vision: seeing while growing. J. Exp. Zool. Suppl. 5, 167-180.
    [17]
    Gisbert, S., and Schaeffel, F., 2018. M to L cone ratios determine eye sizes and baseline refractions in chickens. Exp. Eye Res. 172, 104-111.
    [18]
    Goodrich, L.V., and Strutt, D., 2011. Principles of planar polarity in animal development. Development 138, 1877-1892.
    [19]
    Hale, R., and Strutt, D., 2015. Conservation of planar polarity pathway function across the animal kingdom. Annu. Rev. Genet. 49, 529-551.
    [20]
    Hartong, D.T., Berson, E.L., and Dryja, T.P., 2006. Retinitis pigmentosa. Lancet 368, 1795-1809.
    [21]
    Henderson, D.J., Long, D.A., and Dean, C.H., 2018. Planar cell polarity in organ formation. Curr. Opin. Cell Biol. 55, 96-103.
    [22]
    Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D.R., 2005. Organization of the human trichromatic cone mosaic. J. Neurosci. 25, 9669-9679.
    [23]
    Kim, S., Lehtinen, M.K., Sessa, A., Zappaterra, M.W., Cho, S.H., Gonzalez, D., Boggan, B., Austin, C.A., Wijnholds, J., Gambello, M.J., Malicki, J., LaMantia, A.S., Broccoli, V., Walsh, C.A., 2010. The apical complex couples cell fate and cell survival to cerebral cortical development. Neuron 66, 69-84.
    [24]
    Lamont, R.E., Tan, W.H., Innes, A.M., Parboosingh, J.S., Schneidman-Duhovny, D., Rajkovic, A., Pappas, J., Altschwager, P., DeWard, S., Fulton, A., Gray, K.J., Krall, M., Mehta, L., Rodan, L.H., Saller, D.N. Jr, Steele, D., Stein, D., Yatsenko, S.A., Bernier, F. P., Slavotinek, A.M., 2016. Expansion of phenotype and genotypic data in CRB2-related syndrome. Eur. J. Hum. Genet. 24, 1436-1444.
    [25]
    Ohata, S., Aoki, R., Kinoshita, S., Yamaguchi, M., Tsuruoka-Kinoshita, S., Tanaka, H., Wada, H., Watabe, S., Tsuboi, T., Masai, I., Okamoto, H., 2011. Dual roles of Notch in regulation of apically restricted mitosis and apicobasal polarity of neuroepithelial cells. Neuron 69, 215-230.
    [26]
    Omori, Y., and Malicki, J., 2006. Oko meduzy and related crumbs genes are determinants of apical cell features in the vertebrate embryo. Curr. Biol. 16, 945-957.
    [27]
    Pellissier, L.P., Lundvig, D.M., Tanimoto, N., Klooster, J., Vos, R.M., Richard, F., Sothilingam, V., Garcia Garrido, M., Le Bivic, A., Seeliger, M.W., Wijnholds, J., 2014. CRB2 acts as a modifying factor of CRB1-related retinal dystrophies in mice. Hum. Mol. Genet. 23, 3759-3771.
    [28]
    Pellissier, L.P., Quinn, P.M., Alves, C.H., Vos, R.M., Klooster, J., Flannery, J.G., Heimel, J.A., and Wijnholds, J., 2015. Gene therapy into photoreceptors and Muller glial cells restores retinal structure and function in CRB1 retinitis pigmentosa mouse models. Hum. Mol. Genet. 24, 3104-3118.
    [29]
    Pocha, S.M., and Knust, E., 2013. Complexities of Crumbs function and regulation in tissue morphogenesis. Curr. Biol. 23, R289-R293.
    [30]
    Quinn, P.M., Alves, C.H., Klooster, J., and Wijnholds, J., 2018. CRB2 in immature photoreceptors determines the superior-inferior symmetry of the developing retina to maintain retinal structure and function. Hum. Mol. Genet. 27, 3137-3153.
    [31]
    Quinn, P.M., Buck, T.M., Mulder, A.A., Ohonin, C., Alves, C.H., Vos, R.M., Bialecka, M., van Herwaarden, T., van Dijk, E.H.C., Talib, M., Freund, C., Mikkers, H.M.M., Hoeben, R.C., Goumans, M.J., Boon, C.J.F., Koster, A.J., Chuva de Sousa Lopes, S.M., Jost, C.R., Wijnholds, J., 2019a. Human iPSC-derived retinas recapitulate the fetal CRB1 CRB2 complex formation and demonstrate that photoreceptors and muller glia are targets of AAV5. Stem Cell Rep. 12, 906-919.
    [32]
    Quinn, P.M., Mulder, A.A., Henrique Alves, C., Desrosiers, M., de Vries, S.I., Klooster, J., Dalkara, D., Koster, A.J., Jost, C.R., and Wijnholds, J., 2019b. Loss of CRB2 in Muller glial cells modifies a CRB1-associated retinitis pigmentosa phenotype into a Leber congenital amaurosis phenotype. Hum. Mol. Genet. 28, 105-123.
    [33]
    Ramkumar, N., Omelchenko, T., Silva-Gagliardi, N.F., McGlade, C.J., Wijnholds, J., and Anderson, K.V., 2016. Crumbs2 promotes cell ingression during the epithelial-to-mesenchymal transition at gastrulation. Nat. Cell Biol. 18, 1281-1291.
    [34]
    Rister, J., and Desplan, C., 2011. The retinal mosaics of opsin expression in invertebrates and vertebrates. Dev. Neurobiol. 71, 1212-1226.
    [35]
    Rodriguez-Fraticelli, A.E., Bagwell, J., Bosch-Fortea, M., Boncompain, G., Reglero-Real, N., Garcia-Leon, M.J., Andres, G., Toribio, M.L., Alonso, M.A., Millan, J., Perez, F., Bagnat, M., Martin-Belmonte, F., 2015. Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nat. Cell Biol. 17, 241-250.
    [36]
    Roper, K., 2012. Anisotropy of Crumbs and aPKC drives myosin cable assembly during tube formation. Dev. Cell 23, 939-953.
    [37]
    Salbreux, G., Barthel, L.K., Raymond, P.A., and Lubensky, D.K., 2012. Coupling mechanical deformations and planar cell polarity to create regular patterns in the zebrafish retina. PLoS Comput. Biol. 8, e1002618.
    [38]
    Slavotinek, A.M., 2016. The family of crumbs genes and human disease. Mol. Syndromol. 7, 274-281.
    [39]
    Suzuki, S, Bleckert, A, Williams, P, Takechi, M, Kawamura, S, Wong, R, 2013. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors. PNAS 110, 15109–15114.
    [40]
    Szymaniak, A.D., Mahoney, J.E., Cardoso, W.V., and Varelas, X., 2015. Crumbs3-Mediated polarity directs airway epithelial cell fate through the hippo pathway effector yap. Dev. Cell 34, 283-296.
    [41]
    Tepass, U., 2012. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol. 28, 655-685.
    [42]
    Tuten, W.S., Harmening, W.M., Sabesan, R., Roorda, A., and Sincich, L.C., 2017. Spatiochromatic interactions between individual cone photoreceptors in the human retina. J. Neurosci. 37, 9498-9509.
    [43]
    Udagawa, T., Jo, T., Yanagihara, T., Shimizu, A., Mitsui, J., Tsuji, S., Morishita, S., Onai, R., Miura, K., Kanda, S., Kajiho, Y., Tsurumi, H., Oka, A., Hattori, M., Harita, Y., 2017. Altered expression of Crb2 in podocytes expands a variation of CRB2 mutations in steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 32, 801-809.
    [44]
    van de Pavert, S.A., Kantardzhieva, A., Malysheva, A., Meuleman, J., Versteeg, I., Levelt, C., Klooster, J., Geiger, S., Seeliger, M.W., Rashbass, P., 2004. Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J. Cell Sci. 117, 4169-4177.
    [45]
    van de Pavert, S.A., Sanz, A.S., Aartsen, W.M., Vos, R.M., Versteeg, I., Beck, S.C., Klooster, J., Seeliger, M.W., and Wijnholds, J., 2007. Crb1 is a determinant of retinal apical Muller glia cell features. Glia 55, 1486-1497.
    [46]
    van Rossum, A.G., Aartsen, W.M., Meuleman, J., Klooster, J., Malysheva, A., Versteeg, I., Arsanto, J.P., Le Bivic, A., and Wijnholds, J., 2006. Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Muller glia cells. Hum. Mol. Genet. 15, 2659-2672.
    [47]
    Veth, K.N., Willer, J.R., Collery, R.F., Gray, M.P., Willer, G.B., Wagner, D.S., Mullins, M.C., Udvadia, A.J., Smith, R.S., John, S.W., Gregg, R.G., Link, B.A., 2011. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet.. 7, e1001310.
    [48]
    Viets, K., Eldred, K., and Johnston, R.J., Jr, 2016. Mechanisms of photoreceptor patterning in vertebrates and invertebrates. Trends Genet.. 32, 638-659.
    [49]
    Wang, H., Qiu, Z., Xu, Z., Chen, S.J., Luo, J., Wang, X., and Chen, J., 2018. aPKC is a key polarity determinant in coordinating the function of three distinct cell polarities during collective migration. Development 145.
    [50]
    Watanabe, S., Aizawa, T., Tsukaguchi, H., Tsugawa, K., Tsuruga, K., Shono, A., Nozu, K., Iijima, K., Joh, K., and Tanaka, H., 2018. Long-term clinicopathologic observation in a case of steroid-resistant nephrotic syndrome caused by a novel Crumbs homolog 2 mutation. Nephrology 23, 697-702.
    [51]
    Williams, M., Yen, W., Lu, X., and Sutherland, A., 2014. Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev. Cell 29, 34-46.
    [52]
    Yang, Y., and Mlodzik, M., 2015. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu. Rev. Cell Dev. Biol. 31, 623-646.
    [53]
    Zhou, N., Atchison, D.A., Zele, A.J., Brown, B., and Schmid, K.L., 2015. Cone ratios in myopia and emmetropia: a pilot study. Optom. Vis. Sci. 92, e1-5.
    [54]
    Zou, J., Wang, X., and Wei, X., 2012. Crb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains. Dev. Cell 22, 1261-1274.
    [55]
    Zou, J., Wen, Y., Yang, X., and Wei, X., 2013. Spatial-temporal expressions of Crumbs and Nagie oko and their interdependence in zebrafish central nervous system during early development. Int. J. Dev. Neurosci. 31, 770-782.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return