5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 12
Dec.  2020
Turn off MathJax
Article Contents

Genome assembly and transcriptome analysis provide insights into the antischistosome mechanism of Microtus fortis

doi: 10.1016/j.jgg.2020.11.009
More Information
  • Microtus fortis is the only mammalian host that exhibits intrinsic resistance against Schistosoma japonicum infection. However, the underlying molecular mechanisms of this resistance are not yet known. Here, we perform the first de novo genome assembly of M. fortis, comprehensive gene annotation analysis, and evolution analysis. Furthermore, we compare the recovery rate of schistosomes, pathological changes, and liver transcriptomes between M. fortis and mice at different time points after infection. We observe that the time and type of immune response in M. fortis are different from those in mice. M. fortis activates immune and inflammatory responses on the 10th day post infection, such as leukocyte extravasation, antibody activation, Fc-gamma receptor-mediated phagocytosis, and the interferon signaling cascade, which play important roles in preventing the development of schistosomes. In contrast, an intense immune response occurrs in mice at the late stages of infection and could not eliminate schistosomes. Infected mice suffer severe pathological injury and continuous decreases in cell cycle, lipid metabolism, and other functions. Our findings offer new insights into the intrinsic resistance mechanism ofM. fortis against schistosome infection. The genome sequence also provides the basis for future studies of other important traits in M. fortis.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Bai, X., Lin, J., Wang, X., Feng, J., Gao, J., Xie, J., 2018. Characterization of growth and reproductive performance in Microtus fortis. Lab. Anim. Comp. Med. 38, 135-140.
    [2]
    Bai, X., Wang X., Xie J., Xing, Z., Gao, C., Hu, J., 2011. The biological purification method of Microtus fortis population. Lab. Anim. Comp. Med. 31, 215-217.
    [3]
    Bai, X., Xing, Z., Shen, Z., Liu, X., He, X., 2006. Artificial breeding of Microtus fortis. Lab. Anim. Comp. Med. 26, 242-244.
    [4]
    Bao, W., Kojima, K.K., Kohany, O., 2015. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11.
    [5]
    Berriman, M., Haas, B.J., LoVerde, P.T., Wilson, R.A., Dillon, G.P., Cerqueira, G.C., Mashiyama, S.T., Al-Lazikani, B., Andrade, L.F., Ashton, P.D., Aslett, M.A., Bartholomeu, D.C., Blandin, G., Caffrey, C.R., Coghlan, A., Coulson, R., Day, T.A., Delcher, A., DeMarco, R., Djikeng, A., Eyre, T., Gamble, J.A., Ghedin, E., Gu, Y., Hertz-Fowler, C., Hirai, H., Hirai, Y., Houston, R., Ivens, A., Johnston, D.A., Lacerda, D., Macedo, C.D., McVeigh, P., Ning, Z., Oliveira, G., Overington, J.P., Parkhill, J., Pertea, M., Pierce, R.J., Protasio, A.V., Quail, M.A., Rajandream, M.A., Rogers, J., Sajid, M., Salzberg, S.L., Stanke, M., Tivey, A.R., White, O., Williams, D.L., Wortman, J., Wu, W., Zamanian, M., Zerlotini, A., Fraser-Liggett, C.M., Barrell, B.G.,El-Sayed, N.M., 2009. The genome of the blood fluke Schistosoma mansoni. Nature 460, 352-358.
    [6]
    Birney, E., Clamp, M., Durbin, R., 2004. Genewise and genomewise. Genome Res. 14, 988-995.
    [7]
    Burke, M.L., McManus, D.P., Ramm, G.A., Duke, M., Li, Y., Jones, M.K., Gobert, G.N., 2010. Temporal expression of chemokines dictates the hepatic inflammatory infiltrate in a murine model of schistosomiasis. PLoS Negl. Trop. Dis. 4, e598.
    [8]
    Carter, M.E., Brunet, A., 2007. Foxo transcription factors. Curr. Biol. 17, R113-R114.
    [9]
    Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552.
    [10]
    Chai, S., Fu, Z., Xie, J., 2018. Progress of Microtus fortis in research and application of medical biology. Lab. Anim. Comp. Med. 38, 72-77.
    [11]
    Cheng, G., Gong, Q., Gai, N., Xiong, D.H., Yu, Y.J., Zeng, Q.R.,Hu, W.X., 2011. Karyopherin alpha 2 (kpna2) is associated with the natural resistance to Schistosoma japanicum infection in Microtus fortis. Biomed. Pharmacother. 65, 230-237.
    [12]
    Gang, C., Wenhu, Z., Jingren, W., Wenbin, W.,Shuhong, L., 2013. Study of closed colony of Microtus fortis infected with Schistosoma japonicum. Chin. J. Schistosomiasis Control 25, 242-245.
    [13]
    Geneva, W.H.O., 2018. Global health estimates 2016: Deaths by cause, age, sex, by country and by region, 2000-2016.
    [14]
    Gnerre, S, Maccallum, I, Przybylski, D, Ribeiro, F. J, Burton, J. N, Walker, B. J, Sharpe, T, Hall, G, Shea, T. P, Sykes, S, Berlin, A. M, Aird, D, Costello, M, Daza, R, Williams, L, Nicol, R, Gnirke, A, Nusbaum, C, Lander, E. S, Jaffe, D. B, 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513–1518.
    [15]
    He, Y.X., Salafsky, B., Ramaswamy, K., 2001. Host--parasite relationships of Schistosoma japonicum in mammalian hosts. Trends Parasitol. 17, 320-324.
    [16]
    H.B. He, J.Z.Z., B.S. Liu, 1995. Comparison of infection with Schistosoma japonicum between wild and laboratory bred Microtus fortis. J. Pract. Parasitic. Dis., 72-74.
    [17]
    Han, H., Peng, J., Han, Y., Zhang, M., Hong, Y., Fu, Z., Yang, J., Tao, J., Lin, J., 2013a. Differential expression of micrornas in the non-permissive schistosome host Microtus fortis under schistosome infection. PLoS One 8, e85080.
    [18]
    Han, M.V., Thomas, G.W., Lugo-Martinez, J., Hahn, M.W., 2013b. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using cafe 3. Mol. Biol. Evol. 30, 1987-1997.
    [19]
    Gong, Q., Cheng, G., Qin, Z.Q., Xiong, D.H., Yu, Y.J., Zeng, Q.R.,Hu, W.X., 2010. Identification of the resistance of a novel molecule heat shock protein 90alpha (hsp90alpha) in Microtus fortis to Schistosoma japonicum infection. Acta Trop. 115, 220-226.
    [20]
    Han, Z.G., Brindley, P.J., Wang, S.Y., Chen, Z., 2009. Schistosoma genomics: New perspectives on schistosome biology and host-parasite interaction. Annu. Rev. Genomics Hum. Genet. 10, 211-240.
    [21]
    Hedges, S.B., Dudley, J., Kumar, S., 2006. Timetree: A public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971-2972.
    [22]
    Hedrick, S.M., Hess Michelini, R., Doedens, A.L., Goldrath, A.W., Stone, E.L., 2012. Foxo transcription factors throughout t cell biology. Nat. Rev. Immunol. 12, 649-661.
    [23]
    Honda, K., Takaoka, A., Taniguchi, T., 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349-360.
    [24]
    Horta, M.F., Ramalho-Pinto, F.J., 1984. Subclasses of rat IgG active in the killing of schistosomula of Schistosoma mansoni in vitro and in vivo. J. Immunol. 133, 3326-3332.
    [25]
    Hu, Y., Lu, W., Shen, Y., Xu, Y., Yuan, Z., Zhang, C., Wu, J., Ni, Y., Liu, S., Cao, J., 2012. Immune changes of Schistosoma japonicum infections in various rodent disease models. Exp. Parasitol. 131, 180-189.
    [26]
    Hu, Y., Sun, L., Yuan, Z., Xu, Y., Cao, J., 2017. High throughput data analyses of the immune characteristics of Microtus fortis infected with Schistosoma japonicum. Sci. Rep. 7, 11311.
    [27]
    Hu, Y., Xu, Y., Lu, W., Yuan, Z., Quan, H., Shen, Y., Cao, J., 2014. De novo assembly and transcriptome characterization: Novel insights into the natural resistance mechanisms of Microtus fortis against Schistosoma japonicum. BMC Genomics 15, 417.
    [28]
    Jackson, E.R., Johnson, D., Nash, W.G., 1986. Gene networks in development. J Theor Biol 119, 379-396.
    [29]
    Jia, T.W., Utzinger, J., Deng, Y., Yang, K., Li, Y.Y., Zhu, J.H., King, C.H., Zhou, X.N., 2011. Quantifying quality of life and disability of patients with advanced schistosomiasis japonica. PLoS Negl. Trop. Dis. 5, e966.
    [30]
    Jiang, S.F., Wei, M.X., Lin, J.J., Pan, C.E., Qiu, Q.W., He, Y.Y., Li, H., Shi, Y.J., 2008. Effect of IgG3 antibody purified from sera of Microtus fortis against Schistosoma japonicum. Chin. J. Parasitol. Dis. 26, 34-36.
    [31]
    Jiang, W., Hong, Y., Peng, J., Fu, Z., Feng, X., Liu, J., Shi, Y., Lin, J., 2010. Study on differences in the pathology, T cell subsets and gene expression in susceptible and non-susceptible hosts infected with Schistosoma japonicum. PLoS One 5, e13494.
    [32]
    Kumar, S., Stecher, G.,Tamura, K., 2016. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.
    [33]
    Lefranc, M.P., Giudicelli, V., Duroux, P., Jabado-Michaloud, J., Folch, G., Aouinti, S., Carillon, E., Duvergey, H., Houles, A., Paysan-Lafosse, T., Hadi-Saljoqi, S., Sasorith, S., Lefranc, G.,Kossida, S., 2015. IMGT, the international ImMunoGeneTics information system 25 years on. Nucleic Acids Res. 43, D413-D422.
    [34]
    Li, H., Coghlan, A., Ruan, J., Coin, L.J., Heriche, J.K., Osmotherly, L., Li, R., Liu, T., Zhang, Z., Bolund, L., Wong, G.K., Zheng, W., Dehal, P., Wang, J.,Durbin, R., 2006. Treefam: A curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572-D580.
    [35]
    Li, H.,Durbin, R., 2009. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25, 1754-1760.
    [36]
    Li, R., Fan, W., Tian, G., Zhu, H., He, L., Cai, J., Huang, Q., Cai, Q., Li, B., Bai, Y., Zhang, Z., Zhang, Y., Wang, W., Li, J., Wei, F., Li, H., Jian, M., Li, J., Zhang, Z., Nielsen, R., Li, D., Gu, W., Yang, Z., Xuan, Z., Ryder, O.A., Leung, F.C., Zhou, Y., Cao, J., Sun, X., Fu, Y., Fang, X., Guo, X., Wang, B., Hou, R., Shen, F., Mu, B., Ni, P., Lin, R., Qian, W., Wang, G., Yu, C., Nie, W., Wang, J., Wu, Z., Liang, H., Min, J., Wu, Q., Cheng, S., Ruan, J., Wang, M., Shi, Z., Wen, M., Liu, B., Ren, X., Zheng, H., Dong, D., Cook, K., Shan, G., Zhang, H., Kosiol, C., Xie, X., Lu, Z., Zheng, H., Li, Y., Steiner, C.C., Lam, T.T., Lin, S., Zhang, Q., Li, G., Tian, J., Gong, T., Liu, H., Zhang, D., Fang, L., Ye, C., Zhang, J., Hu, W., Xu, A., Ren, Y., Zhang, G., Bruford, M.W., Li, Q., Ma, L., Guo, Y., An, N., Hu, Y., Zheng, Y., Shi, Y., Li, Z., Liu, Q., Chen, Y., Zhao, J., Qu, N., Zhao, S., Tian, F., Wang, X., Wang, H., Xu, L., Liu, X., Vinar, T., Wang, Y., Lam, T.W., Yiu, S.M., Liu, S., Zhang, H., Li, D., Huang, Y., Wang, X., Yang, G., Jiang, Z., Wang, J., Qin, N., Li, L., Li, J., Bolund, L., Kristiansen, K., Wong, G.K., Olson, M., Zhang, X., Li, S., Yang, H., Wang, J.,Wang, J., 2010. The sequence and de novo assembly of the giant panda genome. Nature 463, 311-317.
    [37]
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Genome Project Data Processing, S., 2009. The sequence alignment/map format and samtools. Bioinformatics 25, 2078-2079.
    [38]
    Li, H., He, Y., Lin, B., J., L., Y., C., Shi, Y., Wei, M., Liu, J., Fu, Z., 2001. The preliminary research of Microtus fortis superinfection Schistosoma japonicuim. Chin. J. Vet. Parasitol. 9, 15-17.
    [39]
    Li, R., Wu, G.J., Xiong, D.H., Gong, Q., Yu, R.J., Hu, W.X., 2013. A Microtus fortis protein, serum albumin, is a novel inhibitor of Schistosoma japonicum schistosomula. Mem. Inst. Oswaldo Cruz 108, 865-872.
    [40]
    Liu, S.Y., Sanchez, D.J., Aliyari, R., Lu, S., Cheng, G., 2012. Systematic identification of type I and type II interferon-induced antiviral factors. Proc. Natl. Acad. Sci. U.S.A. 109, 4239-4244.
    [41]
    Poel, C.E., Spaapen, R.M., van de Winkel, J.G.,Leusen, J.H., 2011. Functional characteristics of the high affinity IgG receptor, FcgammaRI. J. Immunol. 186, 2699-2704.
    [42]
    Pearce, E.J., MacDonald, A.S., 2002. The immunobiology of schistosomiasis. Nat. Rev. Immunol. 2, 499-511.
    [43]
    Schistosoma japonicum Genome Functional Analysis Consortium, 2009. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345-351.
    [44]
    Schmidt, M., Fernandez de Mattos, S., van der Horst, A., Klompmaker, R., Kops, G.J., Lam, E.W., Burgering, B.M., Medema, R.H., 2002. Cell cycle inhibition by foxo forkhead transcription factors involves downregulation of cyclin d. Mol. Cell Biol. 22, 7842-7852.
    [45]
    Schoggins, J.W.,Rice, C.M., 2011. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1, 519-525.
    [46]
    She, R., Chu, J.S., Wang, K., Pei, J.,Chen, N., 2009. Genblasta: Enabling blast to identify homologous gene sequences. Genome Res. 19, 143-149.
    [47]
    Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J.D., Higgins, D.G., 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7, 539.
    [48]
    Slater, G.S., Birney, E., 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31.
    [49]
    Smit, A., Hubley, R , Green, P. , 2013-2015. Repeatmasker open-4.0. http://www.repeatmasker.org.
    [50]
    Smit, A., Hubley, R., 2008-2015. Repeatmodeler open-1.0. http://www.repeatmasker.org.
    [51]
    Vezzi, F., Narzisi, G., Mishra, B., 2012. Reevaluating assembly evaluations with feature response curves: Gage and assemblathons. PLoS One 7, e52210.
    [52]
    Wang, Y., Holmes, E., Nicholson, J.K., Cloarec, O., Chollet, J., Tanner, M., Singer, B.H.,Utzinger, J., 2004. Metabonomic investigations in mice infected with Schistosoma mansoni: An approach for biomarker identification. Proc. Natl. Acad. Sci. U.S.A. 101, 12676-12681.
    [53]
    Wu, K., 1957. Schistosomiasis japonica among domestic and wild animals in china. Chin. Vet. J. 3, 98-100.
    [54]
    Yang, Z., 2007. Paml 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591.
    [55]
    Yang, Y., Feng, J., Bai, X., Shen, Z., Liu, X., Gao, J., Xie, J., Hu, J., Gao, C., 2013. Establishment of a Microtus fortis model of non-alcoholic fatty liver. Acta Lab. Anim. Sci. Sin. 21, 34-38.
    [56]
    Ye, J., Ma, N., Madden, T.L.,Ostell, J.M., 2013. Igblast: An immunoglobulin variable domain sequence analysis tool. Nucleic Acids. Res. 41, W34-W40.
    [57]
    Young, N.D., Jex, A.R., Li, B., Liu, S., Yang, L., Xiong, Z., Li, Y., Cantacessi, C., Hall, R.S., Xu, X., Chen, F., Wu, X., Zerlotini, A., Oliveira, G., Hofmann, A., Zhang, G., Fang, X., Kang, Y., Campbell, B.E., Loukas, A., Ranganathan, S., Rollinson, D., Rinaldi, G., Brindley, P.J., Yang, H., Wang, J., Wang, J.,Gasser, R.B., 2012. Whole-genome sequence of Schistosoma haematobium. Nat. Genet. 44, 221-225.
    [58]
    Zhang, Z., Carriero, N., Zheng, D., Karro, J., Harrison, P.M., Gerstein, M., 2006. Pseudopipe: An automated pseudogene identification pipeline. Bioinformatics 22, 1437-1439.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (6)  / Tables (1)

    Article Metrics

    Article views (88) PDF downloads (7) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return