Blauwendraat, C., Francescatto, M., Gibbs, J.R., Jansen, I.E., Simon-Sanchez, J., Hernandez, D.G., Dillman, A.A., Singleton, A.B., Cookson, M.R., Rizzu, P., et al., 2016. Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe. Genome Med. 8, 65.
|
Blauwendraat, C., Reed, X., Krohn, L., Heilbron, K., Bandres-Ciga, S., Tan, M., Gibbs, J.R., Hernandez, D.G., Kumaran, R., Langston, R., et al., 2020. Genetic modifiers of risk and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain 143, 234-248.
|
Chen, J.A., 2018. Gene co-expression network analysis implicates microRNA processing in Parkinson’s disease pathogenesis. Neurodegener. Dis. 18, 191-199.
|
Gan-Or, Z., Amshalom, I., Kilarski, L.L., Bar-Shira, A., Gana-Weisz, M., Mirelman, A., Marder, K., Bressman, S., Giladi, N., Orr-Urtreger, A., 2015. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 84, 880-887.
|
Gan-Or, Z., Bar-Shira, A., Dahary, D., Mirelman, A., Kedmi, M., Gurevich, T., Giladi, N., Orr-Urtreger, A., 2012. Association of sequence alterations in the putative promoter of RAB7L1 with a reduced Parkinson disease risk. Arch. Neurol. 69, 105‒10.
|
Goldstein, O., Gana-Weisz, M., Cohen-Avinoam, D., Shiner, T., Thaler, A., Cedarbaum, J.M., John, S., Lalioti, M., Gurevich, T., Bar-Shira, A., et al., 2019. Revisiting the non-Gaucher-GBA-E326K carrier state: is it sufficient to increase Parkinson’s disease risk? Mol. Genet. Metabol. 128, 470-475.
|
Iwaki, H., Blauwendraat, C., Makarious, M.B., Bandres-Ciga, S., Leonard, H.L., Gibbs, J.R., Hernandez, D.G., Scholz, S.W., Faghri, F., Nalls, M.A., et al., International Parkinson’s Disease Genomics Consortium, 2020. Penetrance of Parkinson’s disease in LRRK2 p.G2019S carriers is modified by a polygenic risk score. Mov. Disord. 35, 774-780.
|
Keogh, M.J., Wei, W., Aryaman, J., Wilson, I., Talbot, K., Turner, M.R., Mckenzie, C.A., Troakes, C., Attems, J., Smith, C., et al., 2018. Oligogenic genetic variation of neurodegenerative disease genes in 980 postmortem human brains. J. Neurol. Neurosurg. Psychiatry 89, 813-816.
|
Kolisek, M., Sponder, G., Mastrototaro, L., Smorodchenko, A., Launay, P., Vormann, J., Schweigel-Rontgen, M., 2013. Substitution p.A350V in Na+/Mg2+ exchanger SLC41A1, potentially associated with Parkinson’s disease, is a gainof-function mutation. PLoS One 8, e71096.
|
Liu, X., Cheng, R., Verbitsky, M., Kisselev, S., Browne, A., Mejia-Sanatana, H., Louis, E.D., Cote, L.J., Andrews, H., Waters, C., et al., 2011. Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med. Genet. 12, 104.
|
Lubbe, S.J., Escott-Price, V., Gibbs, J.R., Nalls, M.A., Bras, J., Price, T.R., Nicolas, A., Jansen, I.E., Mok, K.Y., Pittman, A.M., et al., For International Parkinson’s Disease Genomics Consortium, 2016. Additional rare variant analysis in Parkinson’s disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Hum. Mol. Genet. 25, 5483-5489.
|
Nalls, M.A., Blauwendraat, C., Vallerga, C.L., Heilbron, K., Bandres-Ciga, S., Chang, D., Tan, M., Kia, D.A., Noyce, A.J., Xue, A., et al., 2019. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091-1102.
|
Nalls, M.A., Pankratz, N., Lill, C.M., Do, C.B., Hernandez, D.G., Saad, M., Destefano, A.L., Kara, E., Bras, J., Sharma, M., et al., 2014. Large-scale metaanalysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989-993.
|
Pihlstrom, L., Rengmark, A., Bjornara, K.A., Dizdar, N., Fardell, C., Forsgren, L., Holmberg, B., Larsen, J.P., Linder, J., Nissbrandt, H., et al., 2015. Fine mapping and resequencing of the PARK16 locus in Parkinson’s disease. J. Hum. Genet. 60, 357-362.
|
Ramirez, A., Ziegler, A., Winkler, S., Kottwitz, J., Giesen, R., Diaz-Grez, F., Miranda, M., Venegas, P., Godoy, O.T., Avello, R., et al., 2011. Association of Parkinson disease to PARK16 in a Chilean sample. Park. Relat. Disord. 17, 70-71.
|
Satake, W., Nakabayashi, Y., Mizuta, I., Hirota, Y., Ito, C., Kubo, M., Kawaguchi, T., Tsunoda, T., Watanabe, M., Takeda, A., et al., 2009. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet. 41, 1303-1307.
|
Seol, W., Nam, D., Son, I., 2019. Rab GTPases as physiological substrates of LRRK2 kinase. Exp. Neurobiol. 28, 134-145.
|
Simon-Sanchez, J., Schulte, C., Bras, J.M., Sharma, M., Gibbs, J.R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S.W., Hernandez, D.G., et al., 2009. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308-1312.
|
Vacic, V., Ozelius, L.J., Clark, L.N., Bar-Shira, A., Gana-Weisz, M., Gurevich, T., Gusev, A., Kedmi, M., Kenny, E.E., Liu, X., et al., 2014. Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes. Hum. Mol. Genet. 23, 4693-4702.
|
Yamanaka, R., Shindo, Y., Oka, K., 2019. Magnesium is a key player in neuronal maturation and neuropathology. Int. J. Mol. Sci. 20, 3439.
|