5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 11
Nov.  2020
Turn off MathJax
Article Contents

Caenorhabditis elegans homologue of Fam210 is required for oogenesis and reproduction

doi: 10.1016/j.jgg.2020.10.008
More Information
  • Corresponding author: E-mail address: chency@zju.edu.cn (Caiyong Chen)
  • Publish Date: 2020-11-25
  • Mitochondria are the central hub for many metabolic processes, including the citric acid cycle, oxidative phosphorylation, and fatty acid oxidation. Recent studies have identified a new mitochondrial protein family, Fam210, that regulates bone metabolism and red cell development in vertebrates. The model organism Caenorhabditis elegans has a Fam210 gene, y56a3a.22, but it lacks both bones and red blood cells. In this study, we report that Y56A3A.22 plays a crucial role in regulating mitochondrial protein homeostasis and reproduction. The nematode y56a3a.22 is expressed in various tissues, including the intestine, muscle, hypodermis, and germline, and its encoded protein is predominantly localized in mitochondria. y56a3a.22 deletion mutants are sterile owing to impaired oogenesis. Loss of Y56A3A.22 induced mitochondrial unfolded protein response (UPRmt), which is mediated through the ATFS-1-dependent pathway, in tissues such as the intestine, germline, hypodermis, and vulval muscle. We further show that infertility and UPRmt induces by Y56A3A.22 deficiency are not attributed to systemic iron deficiency. Together, our study reveals an important role of Y56A3A.22 in regulating mitochondrial protein homeostasis and oogenesis and provides a new genetic tool for exploring the mechanisms regulating mitochondrial metabolism and reproduction as well as the fundamental role of the Fam210 family.
  • loading
  • [1]
    Arribere, J.A., Bell, R.T., Fu, B.X., Artiles, K.L., Hartman, P.S., Fire, A.Z., 2014. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198, 837 - 846.
    [2]
    Benedetti, C., Haynes, C.M., Yang, Y., Harding, H.P., Ron, D., 2006. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229 - 239.
    [3]
    Bohnert, K.A., Kenyon, C., 2017. A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature 551, 629 - 633.
    [4]
    Bratic, I., Hench, J., Henriksson, J., Antebi, A., Burglin, T.R., Trifunovic, A., 2009. Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Res. 37, 1817 - 1828.
    [5]
    Cao, L., Shitara, H., Horii, T., Nagao, Y., Imai, H., Abe, K., Hara, T., Hayashi, J., Yonekawa, H., 2007. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39, 386 - 390.
    [6]
    Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T., Pfanner, N., 2009. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628 - 644.
    [7]
    Claros, M.G., Vincens, P., 1996. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779 - 786.
    [8]
    Cotterill, M., Harris, S.E., Collado Fernandez, E., Lu, J., Huntriss, J.D., Campbell, B.K., Picton, H.M., 2013. The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro. Mol. Hum. Reprod. 19, 444 - 450.
    [9]
    Dickinson, D.J., Pani, A.M., Heppert, J.K., Higgins, C.D., Goldstein, B., 2015. Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette. Genetics 200, 1035 - 1049.
    [10]
    Dickinson, D.J., Ward, J.D., Reiner, D.J., Goldstein, B., 2013. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 10, 1028 - 1034.
    [11]
    Fiorese, C.J., Schulz, A.M., Lin, Y.F., Rosin, N., Pellegrino, M.W., Haynes, C.M., 2016. The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR. Curr. Biol. 26, 2037 - 2043.
    [12]
    Ganio, K., James, S.A., Hare, D.J., Roberts, B.R., McColl, G., 2016. Accurate biometal quantification per individual Caenorhabditis elegans. Analyst 141, 1434 - 1439.
    [13]
    Grant, B., Hirsh, D., 1999. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311 - 4326.
    [14]
    Haynes, C.M., Petrova, K., Benedetti, C., Yang, Y., Ron, D., 2007. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13, 467 - 480.
    [15]
    Huang da, W., Sherman, B.T., Lempicki, R.A., 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44 - 57.
    [16]
    Hubbard, E.J.A., Schedl, T., 2019. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 213, 1145 - 1188.
    [17]
    Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D.P., Zipperlen, P., Ahringer, J., 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231 - 237.
    [18]
    Kang, P.J., Ostermann, J., Shilling, J., Neupert, W., Craig, E.A., Pfanner, N., 1990. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348, 137 - 143.
    [19]
    Kondo, A., Fujiwara, T., Okitsu, Y., Fukuhara, N., Onishi, Y., Nakamura, Y., Sawada, K., Harigae, H., 2016. Identification of a novel putative mitochondrial protein FAM210B associated with erythroid differentiation. Int. J. Hematol. 103, 387 - 395.
    [20]
    Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567 - 580.
    [21]
    Lin, Y.F., Schulz, A.M., Pellegrino, M.W., Lu, Y., Shaham, S., Haynes, C.M., 2016. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533, 416 - 419.
    [22]
    Lithgow, T., Horst, M., Rospert, S., Matouschek, A., Haucke, V., Schatz, G., 1995. Import and folding of proteins by mitochondria. Cold Spring Harb. Symp. Quant. Biol. 60, 609 - 617.
    [23]
    Martinus, R.D., Garth, G.P., Webster, T.L., Cartwright, P., Naylor, D.J., Hoj, P.B., Hoogenraad, N.J., 1996. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur. J. Biochem. 240, 98 - 103.
    [24]
    Melber, A., Haynes, C.M., 2018. UPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. 28, 281 - 295.
    [25]
    Mishra, P., Chan, D.C., 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634 - 646.
    [26]
    Nargund, A.M., Pellegrino, M.W., Fiorese, C.J., Baker, B.M., Haynes, C.M., 2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587 - 590.
    [27]
    Nishimura, H., L'Hernault, S.W., 2010. Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev. Dyn. 239, 1502 - 1514.
    [28]
    Nunnari, J., Suomalainen, A., 2012. Mitochondria: in sickness and in health. Cell 148, 1145 - 1159.
    [29]
    Ostermann, J., Horwich, A.L., Neupert, W., Hartl, F.U., 1989. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341, 125 - 130.
    [30]
    Otten, A.B., Theunissen, T.E., Derhaag, J.G., Lambrichs, E.H., Boesten, I.B., Winandy, M., van Montfoort, A.P., Tarbashevich, K., Raz, E., Gerards, M., Vanoevelen, J.M., van den Bosch, B.J., Muller, M., Smeets, H.J., 2016. Differences in Strength and Timing of the mtDNA Bottleneck between Zebrafish Germline and Non-germline Cells. Cell Rep. 16, 622 - 630.
    [31]
    Pharaoh, G., Pulliam, D., Hill, S., Sataranatarajan, K., Van Remmen, H., 2016. Ablation of the mitochondrial complex IV assembly protein Surf1 leads to increased expression of the UPR(MT) and increased resistance to oxidative stress in primary cultures of fibroblasts. Redox Biol. 8, 430 - 438.
    [32]
    Praitis, V., Casey, E., Collar, D., Austin, J., 2001. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217 - 1226.
    [33]
    Quiros, P.M., Prado, M.A., Zamboni, N., D'Amico, D., Williams, R.W., Finley, D., Gygi, S.P., Auwerx, J., 2017. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216, 2027 - 2045.
    [34]
    Reading, D.S., Hallberg, R.L., Myers, A.M., 1989. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337, 655 - 659.
    [35]
    Romney, S.J., Newman, B.S., Thacker, C., Leibold, E.A., 2011. HIF-1 regulates iron homeostasis in Caenorhabditis elegans by activation and inhibition of genes involved in iron uptake and storage. PLoS Genet. 7, e1002394.
    [36]
    Romney, S.J., Thacker, C., Leibold, E.A., 2008. An iron enhancer element in the FTN-1 gene directs iron-dependent expression in Caenorhabditis elegans intestine. J. Biol. Chem. 283, 716 - 725.
    [37]
    Schmidt, O., Pfanner, N., Meisinger, C., 2010. Mitochondrial protein import: from proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 11, 655 - 667.
    [38]
    Shpilka, T., Haynes, C.M., 2018. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19, 109 - 120.
    [39]
    Tanaka, K.I., Xue, Y., Nguyen-Yamamoto, L., Morris, J.A., Kanazawa, I., Sugimoto, T., Wing, S.S., Richards, J.B., Goltzman, D., 2018. FAM210A is a novel determinant of bone and muscle structure and strength. Proc. Natl. Acad. Sci. U.S.A. 115, E3759 - E3768.
    [40]
    Tian, Y., Garcia, G., Bian, Q., Steffen, K.K., Joe, L., Wolff, S., Meyer, B.J., Dillin, A., 2016. Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR(mt). Cell 165, 1197 - 1208.
    [41]
    Tsang, W.Y., Lemire, B.D., 2002. Mitochondrial genome content is regulated during nematode development. Biochem. Biophys. Res. Commun. 291, 8 - 16.
    [42]
    Vyas, S., Zaganjor, E., Haigis, M.C., 2016. Mitochondria and Cancer. Cell 166, 555 - 566.
    [43]
    Weinberg, S.E., Sena, L.A., Chandel, N.S., 2015. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406 - 417.
    [44]
    Yien, Y.Y., Shi, J., Chen, C., Cheung, J.T.M., Grillo, A.S., Shrestha, R., Li, L., Zhang, X., Kafina, M.D., Kingsley, P.D., King, M.J., Ablain, J., Li, H., Zon, L.I., Palis, J., Burke, M.D., Bauer, D.E., Orkin, S.H., Koehler, C.M., Phillips, J.D., Kaplan, J., Ward, D.M., Lodish, H.F., Paw, B.H., 2018. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J. Biol. Chem. 293, 19797 - 19811.
    [45]
    Yoneda, T., Benedetti, C., Urano, F., Clark, S.G., Harding, H.P., Ron, D., 2004. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci. 117, 4055 - 4066.
    [46]
    Yoon, D.S., Pendergrass, D.L., Lee, M.H., 2016. A simple and rapid method for combining fluorescent in situ RNA hybridization (FISH) and immunofluorescence in the C. elegans germline. MethodsX 3, 378 - 385.
    [47]
    Zhao, Q., Wang, J., Levichkin, I.V., Stasinopoulos, S., Ryan, M.T., Hoogenraad, N.J., 2002. A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411 - 4419.
    [48]
    Zhen, R., Moo, C., Zhao, Z., Chen, M., Feng, H., Zheng, X., Zhang, L., Shi, J., Chen, C., 2020. Wdr26 regulates nuclear condensation in developing erythroblasts. Blood 135, 208 - 219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (6)

    Article Metrics

    Article views (94) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return