[1] |
Ali, A., Zhang, P., Liangfang, Y., Wenshe, S., Wang, H., Lin, X., Dai, Y., Feng, X.H., Moses, R., Wang, D., Li, X., Xiao, J., 2015. KLF17 empowers TGF-beta/Smad signaling by targeting Smad3-dependent pathway to suppress tumor growth and metastasis during cancer progression. Cell Death Dis. 6, e1681.
|
[2] |
Allaire, M., Rautou, P.E., Codogno, P., Lotersztajn, S., 2019. Autophagy in liver diseases: Time for translation? J. Hepatol. 70, 985-998.
|
[3] |
Anido, J., Saez-Borderias, A., Gonzalez-Junca, A., Rodon, L., Folch, G., Carmona, M.A., Prieto-Sanchez, R.M., Barba, I., Martinez-Saez, E., Prudkin, L., Cuartas, I., Raventos, C., Martinez-Ricarte, F., Poca, M.A., Garcia-Dorado, D., Lahn, M.M., Yingling, J.M., Rodon, J., Sahuquillo, J., Baselga, J., Seoane, J., 2010. TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18, 655-668.
|
[4] |
Arsura, M., Panta, G.R., Bilyeu, J.D., Cavin, L.G., Sovak, M.A., Oliver, A.A., Factor, V., Heuchel, R., Mercurio, F., Thorgeirsson, S.S., Sonenshein, G.E., 2003. Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22, 412-425.
|
[5] |
Berasain, C., Ujue Latasa, M., Urtasun, R., Goni, S., Elizalde, M., Garcia-Irigoyen, O., Azcona, M., Prieto, J., Avila, M.A., 2011. Epidermal growth factor receptor (EGFR) crosstalks in liver cancer. Cancers 3, 2444-2461.
|
[6] |
Bierie, B., Moses, H.L., 2006. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6, 506-520.
|
[7] |
Bird, T.G., Muller, M., Boulter, L., Vincent, D.F., Ridgway, R.A., Lopez-Guadamillas, E., Lu, W.Y., Jamieson, T., Govaere, O., Campbell, A.D., Ferreira-Gonzalez, S., Cole, A.M., Hay, T., Simpson, K.J., Clark, W., Hedley, A., Clarke, M., Gentaz, P., Nixon, C., Bryce, S., Kiourtis, C., Sprangers, J., Nibbs, R.J.B., Van Rooijen, N., Bartholin, L., McGreal, S.R., Apte, U., Barry, S.T., Iredale, J.P., Clarke, A.R., Serrano, M., Roskams, T.A., Sansom, O.J., Forbes, S.J., 2018. TGFbeta inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl. Med. 10, eaan1230.
|
[8] |
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424.
|
[9] |
Brenner, C., Galluzzi, L., Kepp, O., Kroemer, G., 2013. Decoding cell death signals in liver inflammation. J. Hepatol. 59, 583-594.
|
[10] |
Cai, J., Pardali, E., Sanchez-Duffhues, G., ten Dijke, P., 2012. BMP signaling in vascular diseases. FEBS Lett. 586, 1993-2002.
|
[11] |
Caja, L., Dituri, F., Mancarella, S., Caballero-Diaz, D., Moustakas, A., Giannelli, G., Fabregat, I., 2018. TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int. J. Mol. Sci. 19, 1294.
|
[12] |
Caja, L., Ortiz, C., Bertran, E., Murillo, M.M., Miro-Obradors, M.J., Palacios, E., Fabregat, I., 2007. Differential intracellular signalling induced by TGF-beta in rat adult hepatocytes and hepatoma cells: implications in liver carcinogenesis. Cell Signal. 19, 683-694.
|
[13] |
Caja, L., Sancho, P., Bertran, E., Fabregat, I., 2011. Dissecting the effect of targeting the epidermal growth factor receptor on TGF-beta-induced-apoptosis in human hepatocellular carcinoma cells. J. Hepatol. 55, 351-358.
|
[14] |
Caja, L., Sancho, P., Bertran, E., Iglesias-Serret, D., Gil, J., Fabregat, I., 2009. Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-beta-induced cell death through impairing up-regulation of the NADPH oxidase NOX4. Cancer Res. 69, 7595-7602.
|
[15] |
Campisi, J., 2013. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685-705.
|
[16] |
Cancer Genome Atlas Research Network. Electronic address, w.b.e., Cancer Genome Atlas Research, N., 2017. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327-1341 e1323.
|
[17] |
Carmona-Cuenca, I., Roncero, C., Sancho, P., Caja, L., Fausto, N., Fernandez, M., Fabregat, I., 2008. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J. Hepatol. 49, 965-976.
|
[18] |
Cassar, L., Nicholls, C., Pinto, A.R., Chen, R., Wang, L., Li, H., Liu, J.P., 2017. TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence. Protein Cell 8, 39-54.
|
[19] |
Cavin, L.G., Romieu-Mourez, R., Panta, G.R., Sun, J., Factor, V.M., Thorgeirsson, S.S., Sonenshein, G.E., Arsura, M., 2003. Inhibition of CK2 activity by TGF-beta1 promotes IkappaB-alpha protein stabilization and apoptosis of immortalized hepatocytes. Hepatology 38, 1540-1551.
|
[20] |
Chandra, M., Zang, S., Li, H., Zimmerman, L.J., Champer, J., Tsuyada, A., Chow, A., Zhou, W., Yu, Y., Gao, H., Ren, X., Lin, R.J., Wang, S.E., 2012. Nuclear translocation of type I transforming growth factor beta receptor confers a novel function in RNA processing. Mol. Cell Biol. 32, 2183-2195.
|
[21] |
Chang, L., Li, C., Guo, T., Wang, H., Ma, W., Yuan, Y., Liu, Q., Ye, Q., Liu, Z., 2016. The human RNA surveillance factor UPF1 regulates tumorigenesis by targeting Smad7 in hepatocellular carcinoma. J Exp. Clin. Cancer Res. 35, 8.
|
[22] |
Chen, J., Gingold, J.A., Su, X., 2019. Immunomodulatory TGF-beta signaling in hepatocellular carcinoma. Trends Mol. Med. 25, 1010-1023.
|
[23] |
Chen, J., Zaidi, S., Rao, S., Chen, J.S., Phan, L., Farci, P., Su, X., Shetty, K., White, J., Zamboni, F., Wu, X., Rashid, A., Pattabiraman, N., Mazumder, R., Horvath, A., Wu, R.C., Li, S., Xiao, C., Deng, C.X., Wheeler, D.A., Mishra, B., Akbani, R., Mishra, L., 2018. Analysis of genomes and transcriptomes of hepatocellular carcinomas identifies mutations and gene expression changes in the transforming growth factor-beta pathway. Gastroenterology 154, 195-210.
|
[24] |
Chen, W., Ten Dijke, P., 2016. Immunoregulation by members of the TGFbeta superfamily. Nat. Rev. Immunol. 16, 723-740.
|
[25] |
Chu, J.S., Ge, F.J., Zhang, B., Wang, Y., Silvestris, N., Liu, L.J., Zhao, C.H., Lin, L., Brunetti, A.E., Fu, Y.L., Wang, J., Paradiso, A., Xu, J.M., 2013. Expression and prognostic value of VEGFR-2, PDGFR-beta, and c-Met in advanced hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 32, 16.
|
[26] |
Coulouarn, C., Factor, V.M., Thorgeirsson, S.S., 2008. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 47, 2059-2067.
|
[27] |
Damdinsuren, B., Nagano, H., Kondo, M., Natsag, J., Hanada, H., Nakamura, M., Wada, H., Kato, H., Marubashi, S., Miyamoto, A., Takeda, Y., Umeshita, K., Dono, K., Monden, M., 2006. TGF-beta1-induced cell growth arrest and partial differentiation is related to the suppression of Id1 in human hepatoma cells. Oncol. Rep. 15, 401-408.
|
[28] |
David, C.J., Massague, J., 2018. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419-435.
|
[29] |
Derynck, R., Budi, E.H., 2019. Specificity, versatility, and control of TGF-beta family signaling. Sci. Signal. 12, eaav5183.
|
[30] |
Dewidar, B., Meyer, C., Dooley, S., Meindl-Beinker, A.N., 2019. TGF-beta in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells 8, 1419.
|
[31] |
Di Fazio, P., Matrood, S., 2018. Targeting autophagy in liver cancer. Transl. Gastroenterol. Hepatol. 3, 39.
|
[32] |
Ding, L., Wang, Z., Yan, J., Yang, X., Liu, A., Qiu, W., Zhu, J., Han, J., Zhang, H., Lin, J., Cheng, L., Qin, X., Niu, C., Yuan, B., Wang, X., Zhu, C., Zhou, Y., Li, J., Song, H., Huang, C., Ye, Q., 2009. Human four-and-a-half LIM family members suppress tumor cell growth through a TGF-beta-like signaling pathway. J. Clin. Invest. 119, 349-361.
|
[33] |
Dituri, F., Mancarella, S., Cigliano, A., Chieti, A., Giannelli, G., 2019. TGF-beta as multifaceted orchestrator in HCC progression: signaling, EMT, immune microenvironment, and novel therapeutic perspectives. Semin. Liver Dis. 39, 53-69.
|
[34] |
Dooley, S., ten Dijke, P., 2012. TGF-beta in progression of liver disease. Cell Tissue Res. 347, 245-256.
|
[35] |
Dzieran, J., Fabian, J., Feng, T., Coulouarn, C., Ilkavets, I., Kyselova, A., Breuhahn, K., Dooley, S., Meindl-Beinker, N.M., 2013. Comparative analysis of TGF-beta/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines. PLoS One 8, e72252.
|
[36] |
Eggert, T., Wolter, K., Ji, J., Ma, C., Yevsa, T., Klotz, S., Medina-Echeverz, J., Longerich, T., Forgues, M., Reisinger, F., Heikenwalder, M., Wang, X.W., Zender, L., Greten, T.F., 2016. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533-547.
|
[37] |
Eguchi, A., Wree, A., Feldstein, A.E., 2014. Biomarkers of liver cell death. J. Hepatol. 60, 1063-1074.
|
[38] |
Fabregat, I., Caballero-Diaz, D., 2018. Transforming growth factor-beta-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Front. Oncol. 8, 357.
|
[39] |
Fabregat, I., Herrera, B., Fernandez, M., Alvarez, A.M., Sanchez, A., Roncero, C., Ventura, J.J., Valverde, A.M., Benito, M., 2000. Epidermal growth factor impairs the cytochrome C/caspase-3 apoptotic pathway induced by transforming growth factor beta in rat fetal hepatocytes via a phosphoinositide 3-kinase-dependent pathway. Hepatology 32, 528-535.
|
[40] |
Fabregat, I., Moreno-Caceres, J., Sanchez, A., Dooley, S., Dewidar, B., Giannelli, G., Ten Dijke, P., 2016. TGF-beta signalling and liver disease. FEBS J. 283, 2219-2232.
|
[41] |
Fabregat, I., Roncero, C., Fernandez, M., 2007. Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int. 27, 155-162.
|
[42] |
Faget, D.V., Ren, Q., Stewart, S.A., 2019. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439-453.
|
[43] |
Farazi, P.A., DePinho, R.A., 2006. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer 6, 674-687.
|
[44] |
Feng, T., Dzieran, J., Gu, X., Marhenke, S., Vogel, A., Machida, K., Weiss, T.S., Ruemmele, P., Kollmar, O., Hoffmann, P., Grasser, F., Allgayer, H., Fabian, J., Weng, H.L., Teufel, A., Maass, T., Meyer, C., Lehmann, U., Zhu, C., Mertens, P.R., Gao, C.F., Dooley, S., Meindl-Beinker, N.M., 2015a. Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma. Clin. Sci. (Lond) 128, 761-774.
|
[45] |
Feng, X.X., Luo, J., Liu, M., Yan, W., Zhou, Z.Z., Xia, Y.J., Tu, W., Li, P.Y., Feng, Z.H., Tian, D.A., 2015b. Sirtuin 6 promotes transforming growth factor-beta1/H2O2/HOCl-mediated enhancement of hepatocellular carcinoma cell tumorigenicity by suppressing cellular senescence. Cancer Sci. 106, 559-566.
|
[46] |
Fischer, A.N., Fuchs, E., Mikula, M., Huber, H., Beug, H., Mikulits, W., 2007. PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. Oncogene 26, 3395-3405.
|
[47] |
Franco, D.L., Mainez, J., Vega, S., Sancho, P., Murillo, M.M., de Frutos, C.A., del Castillo, G., Lopez-Blau, C., Fabregat, I., Nieto, M.A., 2010. Snail1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J. Cell Sci. 123, 3467-3477.
|
[48] |
Fu, H., He, Y., Qi, L., Chen, L., Luo, Y., Chen, L., Li, Y., Zhang, N., Guo, H., 2017. cPLA2alpha activates PI3K/AKT and inhibits Smad2/3 during epithelial-mesenchymal transition of hepatocellular carcinoma cells. Cancer Lett. 403, 260-270.
|
[49] |
Furuta, K., Misao, S., Takahashi, K., Tagaya, T., Fukuzawa, Y., Ishikawa, T., Yoshioka, K., Kakumu, S., 1999. Gene mutation of transforming growth factor beta1 type II receptor in hepatocellular carcinoma. Int. J. Cancer 81, 851-853.
|
[50] |
Gingold, J.A., Zhu, D., Lee, D.F., Kaseb, A., Chen, J., 2018. Genomic profiling and metabolic homeostasis in primary liver cancers. Trends Mol. Med. 24, 395-411.
|
[51] |
Godoy, P., Hengstler, J.G., Ilkavets, I., Meyer, C., Bachmann, A., Muller, A., Tuschl, G., Mueller, S.O., Dooley, S., 2009. Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49, 2031-2043.
|
[52] |
Gomez, G.G., Wykosky, J., Zanca, C., Furnari, F.B., Cavenee, W.K., 2013. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks. Cancer Biol. Med. 10, 192-205.
|
[53] |
Gotzmann, J., Fischer, A.N., Zojer, M., Mikula, M., Proell, V., Huber, H., Jechlinger, M., Waerner, T., Weith, A., Beug, H., Mikulits, W., 2006. A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene 25, 3170-3185.
|
[54] |
Gracia-Sancho, J., Guixe-Muntet, S., 2018. The many-faced role of autophagy in liver diseases. J. Hepatol. 68, 593-594.
|
[55] |
Gudey, S.K., Sundar, R., Mu, Y., Wallenius, A., Zang, G., Bergh, A., Heldin, C.H., Landstrom, M., 2014. TRAF6 stimulates the tumor-promoting effects of TGFbeta type I receptor through polyubiquitination and activation of presenilin 1. Sci. Signal. 7, ra2.
|
[56] |
Hamajima, H., Ozaki, I., Zhang, H., Iwane, S., Kawaguchi, Y., Eguchi, Y., Matsuhashi, S., Mizuta, T., Matsuzaki, K., Fujimoto, K., 2009. Modulation of the transforming growth factor-beta1-induced Smad phosphorylation by the extracellular matrix receptor beta1-integrin. Int. J. Oncol. 35, 1441-1447.
|
[57] |
Hamidi, A., Song, J., Thakur, N., Itoh, S., Marcusson, A., Bergh, A., Heldin, C.H., Landstrom, M., 2017. TGF-beta promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85alpha. Sci. Signal. 10.
|
[58] |
Han, C., Bowen, W.C., Li, G., Demetris, A.J., Michalopoulos, G.K., Wu, T., 2010. Cytosolic phospholipase A2alpha and peroxisome proliferator-activated receptor gamma signaling pathway counteracts transforming growth factor beta-mediated inhibition of primary and transformed hepatocyte growth. Hepatology 52, 644-655.
|
[59] |
Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674.
|
[60] |
Hardy, S.D., Shinde, A., Wang, W.H., Wendt, M.K., Geahlen, R.L., 2017. Regulation of epithelial-mesenchymal transition and metastasis by TGF-beta, P-bodies, and autophagy. Oncotarget 8, 103302-103314.
|
[61] |
Hashimoto, O., Ueno, T., Kimura, R., Ohtsubo, M., Nakamura, T., Koga, H., Torimura, T., Uchida, S., Yamashita, K., Sata, M., 2003. Inhibition of proteasome-dependent degradation of Wee1 in G2-arrested Hep3B cells by TGF beta 1. Mol. Carcinogen. 36, 171-182.
|
[62] |
Hata, A., Chen, Y.G., 2016. TGF-beta signaling from receptors to Smads. Cold Spring Harb. Perspect. Biol. 8, a022061.
|
[63] |
Hayflick, L., Moorhead, P.S., 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621.
|
[64] |
Heldin, C.H., Moustakas, A., 2016. Signaling receptors for TGF-beta family members. Cold Spring Harb. Perspect. Biol. 8, a022053.
|
[65] |
Herrera, B., Fernandez, M., Alvarez, A.M., Roncero, C., Benito, M., Gil, J., Fabregat, I., 2001. Activation of caspases occurs downstream from radical oxygen species production, Bcl-xL down-regulation, and early cytochrome C release in apoptosis induced by transforming growth factor beta in rat fetal hepatocytes. Hepatology 34, 548-556.
|
[66] |
Herzer, K., Ganten, T.M., Schulze-Bergkamen, H., Grosse-Wilde, A., Koschny, R., Krammer, P.H., Walczak, H., 2005. Transforming growth factor beta can mediate apoptosis via the expression of TRAIL in human hepatoma cells. Hepatology 42, 183-192.
|
[67] |
Herzer, K., Grosse-Wilde, A., Krammer, P.H., Galle, P.R., Kanzler, S., 2008. Transforming growth factor-beta-mediated tumor necrosis factor-related apoptosis-inducing ligand expression and apoptosis in hepatoma cells requires functional cooperation between Smad proteins and activator protein-1. Mol. Cancer Res. 6, 1169-1177.
|
[68] |
Hill, C.S., 2016. Transcriptional Control by the SMADs. Cold Spring Harb. Perspect. Biol. 8, a022079.
|
[69] |
Ho, J., Cocolakis, E., Dumas, V.M., Posner, B.I., Laporte, S.A., Lebrun, J.J., 2005. The G protein-coupled receptor kinase-2 is a TGFbeta-inducible antagonist of TGFbeta signal transduction. EMBO J. 24, 3247-3258.
|
[70] |
Hofmann, T.G., Stollberg, N., Schmitz, M.L., Will, H., 2003. HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res. 63, 8271-8277.
|
[71] |
Hoshida, Y., Nijman, S.M., Kobayashi, M., Chan, J.A., Brunet, J.P., Chiang, D.Y., Villanueva, A., Newell, P., Ikeda, K., Hashimoto, M., Watanabe, G., Gabriel, S., Friedman, S.L., Kumada, H., Llovet, J.M., Golub, T.R., 2009. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69, 7385-7392.
|
[72] |
Huang, Y.H., Hu, J., Chen, F., Lecomte, N., Basnet, H., David, C.J., Witkin, M.D., Allen, P.J., Leach, S.D., Hollmann, T.J., Iacobuzio-Donahue, C.A., Massague, J., 2020. ID1 mediates escape from TGFbeta tumor suppression in pancreatic cancer. Cancer Discov. 10, 142-157.
|
[73] |
Hujie, G., Zhou, S.H., Zhang, H., Qu, J., Xiong, X.W., Hujie, O., Liao, C.G., Yang, S.E., 2018. MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/KLF11/Smads in hepatocellular carcinoma. Cancer Cell Int. 18, 10.
|
[74] |
Im, Y.H., Kim, H.T., Kim, I.Y., Factor, V.M., Hahm, K.B., Anzano, M., Jang, J.J., Flanders, K., Haines, D.C., Thorgeirsson, S.S., Sizeland, A., Kim, S.J., 2001. Heterozygous mice for the transforming growth factor-beta type II receptor gene have increased susceptibility to hepatocellular carcinogenesis. Cancer Res. 61, 6665-6668.
|
[75] |
Jang, C.W., Chen, C.H., Chen, C.C., Chen, J.Y., Su, Y.H., Chen, R.H., 2002. TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat. Cell Biol. 4, 51-58.
|
[76] |
Jiang, Y., Sun, A., Zhao, Y., Ying, W., Sun, H., Yang, X., Xing, B., Sun, W., Ren, L., Hu, B., Li, C., Zhang, L., Qin, G., Zhang, M., Chen, N., Zhang, M., Huang, Y., Zhou, J., Zhao, Y., Liu, M., Zhu, X., Qiu, Y., Sun, Y., Huang, C., Yan, M., Wang, M., Liu, W., Tian, F., Xu, H., Zhou, J., Wu, Z., Shi, T., Zhu, W., Qin, J., Xie, L., Fan, J., Qian, X., He, F., Chinese Human Proteome Project, C., 2019. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567, 257-261.
|
[77] |
Kang, T.W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., Iken, M., Vucur, M., Weiss, S., Heikenwalder, M., Khan, S., Gil, J., Bruder, D., Manns, M., Schirmacher, P., Tacke, F., Ott, M., Luedde, T., Longerich, T., Kubicka, S., Zender, L., 2011. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547-551.
|
[78] |
Kang, Y., Chen, C.R., Massague, J., 2003. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11, 915-926.
|
[79] |
Katakura, Y., 2006. Molecular basis for the cellular senescence program and its application to anticancer therapy. Biosci. Biotechnol. Biochem. 70, 1076-1081.
|
[80] |
Kaur, S., Wang, F., Venkatraman, M., Arsura, M., 2005. X-linked inhibitor of apoptosis (XIAP) inhibits c-Jun N-terminal kinase 1 (JNK1) activation by transforming growth factor beta1 (TGF-beta1) through ubiquitin-mediated proteosomal degradation of the TGF-beta1-activated kinase 1 (TAK1). J. Biol. Chem. 280, 38599-38608.
|
[81] |
Khambu, B., Huda, N., Chen, X., Antoine, D.J., Li, Y., Dai, G., Kohler, U.A., Zong, W.X., Waguri, S., Werner, S., Oury, T.D., Dong, Z., Yin, X.M., 2018. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J. Clin. Invest. 128, 2419-2435.
|
[82] |
Kim, K.Y., Kim, B.C., Xu, Z., Kim, S.J., 2004. Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J. Biol. Chem. 279, 29478-29484.
|
[83] |
Kitisin, K., Ganesan, N., Tang, Y., Jogunoori, W., Volpe, E.A., Kim, S.S., Katuri, V., Kallakury, B., Pishvaian, M., Albanese, C., Mendelson, J., Zasloff, M., Rashid, A., Fishbein, T., Evans, S.R., Sidawy, A., Reddy, E.P., Mishra, B., Johnson, L.B., Shetty, K., Mishra, L., 2007. Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation. Oncogene 26, 7103-7110.
|
[84] |
Kiyono, K., Suzuki, H.I., Matsuyama, H., Morishita, Y., Komuro, A., Kano, M.R., Sugimoto, K., Miyazono, K., 2009. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 69, 8844-8852.
|
[85] |
Korkut, A., Zaidi, S., Kanchi, R.S., Rao, S., Gough, N.R., Schultz, A., Li, X., Lorenzi, P.L., Berger, A.C., Robertson, G., Kwong, L.N., Datto, M., Roszik, J., Ling, S., Ravikumar, V., Manyam, G., Rao, A., Shelley, S., Liu, Y., Ju, Z., Hansel, D., de Velasco, G., Pennathur, A., Andersen, J.B., O'Rourke, C.J., Ohshiro, K., Jogunoori, W., Nguyen, B.N., Li, S., Osmanbeyoglu, H.U., Ajani, J.A., Mani, S.A., Houseman, A., Wiznerowicz, M., Chen, J., Gu, S., Ma, W., Zhang, J., Tong, P., Cherniack, A.D., Deng, C., Resar, L., Cancer Genome Atlas Research, N., Weinstein, J.N., Mishra, L., Akbani, R., 2018. A Pan-cancer analysis reveals high-frequency genetic alterations in mediators of signaling by the TGF-beta superfamily. Cell Syst. 7, 422-437 e427.
|
[86] |
Kotsafti, A., Farinati, F., Cardin, R., Cillo, U., Nitti, D., Bortolami, M., 2012. Autophagy and apoptosis-related genes in chronic liver disease and hepatocellular carcinoma. BMC Gastroenterol. 12, 118.
|
[87] |
Krstic, J., Trivanovic, D., Mojsilovic, S., Santibanez, J.F., 2015. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxid. Med. Cell Longev. 2015, 654594.
|
[88] |
Lan, S.H., Wu, S.Y., Zuchini, R., Lin, X.Z., Su, I.J., Tsai, T.F., Lin, Y.J., Wu, C.T., Liu, H.S., 2014. Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology 59, 505-517.
|
[89] |
Lee, M.K., Pardoux, C., Hall, M.C., Lee, P.S., Warburton, D., Qing, J., Smith, S.M., Derynck, R., 2007. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26, 3957-3967.
|
[90] |
Li, H., Liu, J.P., 2007. Mechanisms of action of TGF-beta in cancer: evidence for Smad3 as a repressor of the hTERT gene. Ann. N. Y. Acad. Sci. 1114, 56-68.
|
[91] |
Li, J., Yang, B., Zhou, Q., Wu, Y., Shang, D., Guo, Y., Song, Z., Zheng, Q., Xiong, J., 2013. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 34, 1343-1351.
|
[92] |
Li, P., Du, Q., Cao, Z., Guo, Z., Evankovich, J., Yan, W., Chang, Y., Shao, L., Stolz, D.B., Tsung, A., Geller, D.A., 2012. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett. 314, 213-222.
|
[93] |
Li, Q., Liu, G., Yuan, H., Wang, J., Guo, Y., Chen, T., Zhai, R., Shao, D., Ni, W., Tai, G., 2015. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells. Oncotarget 6, 4253-4265.
|
[94] |
Li, X., Feng, X.H., 2020. SMAD-oncoprotein interplay: potential determining factors in targeted therapies. Biochem. Pharmacol. 180, 114155.
|
[95] |
Li, Y., Tu, S., Zeng, Y., Zhang, C., Deng, T., Luo, W., Lian, L., Chen, L., Xiong, X., Yan, X., 2020. KLF2 inhibits TGF-beta-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim. Biophys. Sin. (Shanghai) 52, 485-494.
|
[96] |
Liang, Y.Y., Brunicardi, F.C., Lin, X., 2009. Smad3 mediates immediate early induction of Id1 by TGF-beta. Cell Res. 19, 140-148.
|
[97] |
Liu, L., Liao, J.Z., He, X.X., Li, P.Y., 2017. The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget 8, 57707-57722.
|
[98] |
Llovet, J.M., Montal, R., Sia, D., Finn, R.S., 2018. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15, 599-616.
|
[99] |
Luedde, T., Kaplowitz, N., Schwabe, R.F., 2014. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147, 765-783 e764.
|
[100] |
Majumdar, A., Curley, S.A., Wu, X., Brown, P., Hwang, J.P., Shetty, K., Yao, Z.X., He, A.R., Li, S., Katz, L., Farci, P., Mishra, L., 2012. Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 9, 530-538.
|
[101] |
Mamiya, T., Yamazaki, K., Masugi, Y., Mori, T., Effendi, K., Du, W., Hibi, T., Tanabe, M., Ueda, M., Takayama, T., Sakamoto, M., 2010. Reduced transforming growth factor-beta receptor II expression in hepatocellular carcinoma correlates with intrahepatic metastasis. Lab Invest. 90, 1339-1345.
|
[102] |
Marquardt, J.U., Andersen, J.B., Thorgeirsson, S.S., 2015. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat. Rev. Cancer 15, 653-667.
|
[103] |
Marquardt, J.U., Edlich, F., 2019. Predisposition to apoptosis in hepatocellular carcinoma: from mechanistic insights to therapeutic strategies. Front. Oncol. 9, 1421.
|
[104] |
Massague, J., 2008. TGFbeta in Cancer. Cell 134, 215-230.
|
[105] |
Massague, J., 2012. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616-630.
|
[106] |
Mathew, R., Karp, C.M., Beaudoin, B., Vuong, N., Chen, G., Chen, H.Y., Bray, K., Reddy, A., Bhanot, G., Gelinas, C., Dipaola, R.S., Karantza-Wadsworth, V., White, E., 2009. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062-1075.
|
[107] |
Matsuzaki, K., Date, M., Furukawa, F., Tahashi, Y., Matsushita, M., Sakitani, K., Yamashiki, N., Seki, T., Saito, H., Nishizawa, M., Fujisawa, J., Inoue, K., 2000. Autocrine stimulatory mechanism by transforming growth factor beta in human hepatocellular carcinoma. Cancer Res. 60, 1394-1402.
|
[108] |
Meyer, C., Liu, Y., Kaul, A., Peipe, I., Dooley, S., 2013. Caveolin-1 abrogates TGF-beta mediated hepatocyte apoptosis. Cell Death Dis. 4, e466.
|
[109] |
Miyazawa, K., Miyazono, K., 2017. Regulation of TGF-beta family signaling by inhibitory Smads. Cold Spring Harb. Perspect. Biol. 9, a022095.
|
[110] |
Moon, H., Ju, H.L., Chung, S.I., Cho, K.J., Eun, J.W., Nam, S.W., Han, K.H., Calvisi, D.F., Ro, S.W., 2017. Transforming growth factor-beta promotes liver tumorigenesis in mice via up-regulation of Snail. Gastroenterology 153, 1378-1391 e1376.
|
[111] |
Moreno-Caceres, J., Caballero-Diaz, D., Nwosu, Z.C., Meyer, C., Lopez-Luque, J., Malfettone, A., Lastra, R., Serrano, T., Ramos, E., Dooley, S., Fabregat, I., 2017. The level of caveolin-1 expression determines response to TGF-beta as a tumour suppressor in hepatocellular carcinoma cells. Cell Death Dis. 8, e3098.
|
[112] |
Moreno-Caceres, J., Caja, L., Mainez, J., Mayoral, R., Martin-Sanz, P., Moreno-Vicente, R., Del Pozo, M.A., Dooley, S., Egea, G., Fabregat, I., 2014. Caveolin-1 is required for TGF-beta-induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17. Cell Death Dis. 5, e1326.
|
[113] |
Moreno-Caceres, J., Fabregat, I., 2015. Apoptosis in liver carcinogenesis and chemotherapy. Hepat Oncol. 2, 381-397.
|
[114] |
Moreno-Caceres, J., Mainez, J., Mayoral, R., Martin-Sanz, P., Egea, G., Fabregat, I., 2016. Caveolin-1-dependent activation of the metalloprotease TACE/ADAM17 by TGF-beta in hepatocytes requires activation of Src and the NADPH oxidase NOX1. FEBS J. 283, 1300-1310.
|
[115] |
Mori, S., Matsuzaki, K., Yoshida, K., Furukawa, F., Tahashi, Y., Yamagata, H., Sekimoto, G., Seki, T., Matsui, H., Nishizawa, M., Fujisawa, J., Okazaki, K., 2004. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene 23, 7416-7429.
|
[116] |
Morikawa, M., Derynck, R., Miyazono, K., 2016. TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol 8, a021873.
|
[117] |
Moses, H.L., Roberts, A.B., Derynck, R., 2016. The Discovery and Early Days of TGF-beta: A Historical Perspective. Cold Spring Harb Perspect Biol. 8, a021865.
|
[118] |
Moustakas, A., Kardassis, D., 1998. Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc. Natl. Acad. Sci U. S. A. 95, 6733-6738.
|
[119] |
Mu, Y., Sundar, R., Thakur, N., Ekman, M., Gudey, S.K., Yakymovych, M., Hermansson, A., Dimitriou, H., Bengoechea-Alonso, M.T., Ericsson, J., Heldin, C.H., Landstrom, M., 2011. TRAF6 ubiquitinates TGFbeta type I receptor to promote its cleavage and nuclear translocation in cancer. Nat. Commun. 2, 330.
|
[120] |
Mudbhary, R., Hoshida, Y., Chernyavskaya, Y., Jacob, V., Villanueva, A., Fiel, M.I., Chen, X., Kojima, K., Thung, S., Bronson, R.T., Lachenmayer, A., Revill, K., Alsinet, C., Sachidanandam, R., Desai, A., SenBanerjee, S., Ukomadu, C., Llovet, J.M., Sadler, K.C., 2014. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25, 196-209.
|
[121] |
Munoz-Espin, D., Canamero, M., Maraver, A., Gomez-Lopez, G., Contreras, J., Murillo-Cuesta, S., Rodriguez-Baeza, A., Varela-Nieto, I., Ruberte, J., Collado, M., Serrano, M., 2013. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104-1118.
|
[122] |
Munoz-Espin, D., Serrano, M., 2014. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482-496.
|
[123] |
Murata, M., Matsuzaki, K., Yoshida, K., Sekimoto, G., Tahashi, Y., Mori, S., Uemura, Y., Sakaida, N., Fujisawa, J., Seki, T., Kobayashi, K., Yokote, K., Koike, K., Okazaki, K., 2009. Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatology 49, 1203-1217.
|
[124] |
Murillo, M.M., Carmona-Cuenca, I., Del Castillo, G., Ortiz, C., Roncero, C., Sanchez, A., Fernandez, M., Fabregat, I., 2007. Activation of NADPH oxidase by transforming growth factor-beta in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-kappaB-dependent mechanism. Biochem. J. 405, 251-259.
|
[125] |
Murillo, M.M., del Castillo, G., Sanchez, A., Fernandez, M., Fabregat, I., 2005. Involvement of EGF receptor and c-Src in the survival signals induced by TGF-beta1 in hepatocytes. Oncogene 24, 4580-4587.
|
[126] |
Nardella, C., Clohessy, J.G., Alimonti, A., Pandolfi, P.P., 2011. Pro-senescence therapy for cancer treatment. Nat. Rev. Cancer 11, 503-511.
|
[127] |
Ozaki, I., Hamajima, H., Matsuhashi, S., Mizuta, T., 2011. Regulation of TGF-beta1-induced pro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front. Physiol. 2, 78.
|
[128] |
Park, J., Lee, J., Kang, W., Chang, S., Shin, E.C., Choi, C., 2013. TGF-beta1 and hypoxia-dependent expression of MKP-1 leads tumor resistance to death receptor-mediated cell death. Cell Death Dis. 4, e521.
|
[129] |
Perlman, R., Schiemann, W.P., Brooks, M.W., Lodish, H.F., Weinberg, R.A., 2001. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat. Cell Biol. 3, 708-714.
|
[130] |
Ramesh, S., Qi, X.J., Wildey, G.M., Robinson, J., Molkentin, J., Letterio, J., Howe, P.H., 2008. TGF beta-mediated BIM expression and apoptosis are regulated through SMAD3-dependent expression of the MAPK phosphatase MKP2. EMBO Rep. 9, 990-997.
|
[131] |
Ramjaun, A.R., Tomlinson, S., Eddaoudi, A., Downward, J., 2007. Upregulation of two BH3-only proteins, Bmf and Bim, during TGF beta-induced apoptosis. Oncogene 26, 970-981.
|
[132] |
Rao, S., Mishra, L., 2019. Targeting transforming growth factor beta signaling in liver cancer. Hepatology 69, 1375-1378.
|
[133] |
Roberts, R.A., James, N.H., Cosulich, S.C., 2000. The role of protein kinase B and mitogen-activated protein kinase in epidermal growth factor and tumor necrosis factor alpha-mediated rat hepatocyte survival and apoptosis. Hepatology 31, 420-427.
|
[134] |
Robertson, I.B., Rifkin, D.B., 2016. Regulation of the bioavailability of TGF-beta and TGF-beta-related proteins. Cold Spring Harb. Perspect. Biol. 8, a021907.
|
[135] |
Rojas, A., Zhang, P., Wang, Y., Foo, W.C., Munoz, N.M., Xiao, L., Wang, J., Gores, G.J., Hung, M.C., Blechacz, B., 2016. A positive TGF-beta/c-KIT feedback loop drives tumor progression in advanced primary liver cancer. Neoplasia (New York, N.Y.) 18, 371-386.
|
[136] |
Schulze, K., Imbeaud, S., Letouze, E., Alexandrov, L.B., Calderaro, J., Rebouissou, S., Couchy, G., Meiller, C., Shinde, J., Soysouvanh, F., Calatayud, A.L., Pinyol, R., Pelletier, L., Balabaud, C., Laurent, A., Blanc, J.F., Mazzaferro, V., Calvo, F., Villanueva, A., Nault, J.C., Bioulac-Sage, P., Stratton, M.R., Llovet, J.M., Zucman-Rossi, J., 2015. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505-511.
|
[137] |
Schwabe, R.F., Luedde, T., 2018. Apoptosis and necroptosis in the liver: a matter of life and death. Nat. Rev. Gastroenterol. Hepatol. 15, 738-752.
|
[138] |
Senturk, S., Mumcuoglu, M., Gursoy-Yuzugullu, O., Cingoz, B., Akcali, K.C., Ozturk, M., 2010. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 52, 966-974.
|
[139] |
Seoane, J., Gomis, R.R., 2017. TGF-beta family signaling in tumor suppression and cancer progression. Cold Spring Harb. Perspect. Biol. 9, a022277.
|
[140] |
Shi, C., Cai, Y., Li, Y., Li, Y., Hu, N., Ma, S., Hu, S., Zhu, P., Wang, W., Zhou, H., 2018. Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol. 14, 59-71.
|
[141] |
Shima, Y., Nakao, K., Nakashima, T., Kawakami, A., Nakata, K., Hamasaki, K., Kato, Y., Eguchi, K., Ishii, N., 1999. Activation of caspase-8 in transforming growth factor-beta-induced apoptosis of human hepatoma cells. Hepatology 30, 1215-1222.
|
[142] |
Sohn, B.H., Park, I.Y., Lee, J.J., Yang, S.J., Jang, Y.J., Park, K.C., Kim, D.J., Lee, D.C., Sohn, H.A., Kim, T.W., Yoo, H.S., Choi, J.Y., Bae, Y.S., Yeom, Y.I., 2010. Functional switching of TGF-beta1 signaling in liver cancer via epigenetic modulation of a single CpG site in TTP promoter. Gastroenterology 138, 1898-1908.
|
[143] |
Sorrentino, A., Thakur, N., Grimsby, S., Marcusson, A., von Bulow, V., Schuster, N., Zhang, S., Heldin, C.H., Landstrom, M., 2008a. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10, 1199-1207.
|
[144] |
Sorrentino, A., Thakur, N., Grimsby, S., Marcusson, A., von Bulow, V., Schuster, N., Zhang, S., Heldin, C.H., Landstrom, M., 2008b. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10, 1199-1207.
|
[145] |
Stankic, M., Pavlovic, S., Chin, Y., Brogi, E., Padua, D., Norton, L., Massague, J., Benezra, R., 2013. TGF-beta-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep. 5, 1228-1242.
|
[146] |
Stolfi, C., De Simone, V., Colantoni, A., Franze, E., Ribichini, E., Fantini, M.C., Caruso, R., Monteleone, I., Sica, G.S., Sileri, P., MacDonald, T.T., Pallone, F., Monteleone, G., 2014. A functional role for Smad7 in sustaining colon cancer cell growth and survival. Cell Death Dis. 5, e1073.
|
[147] |
Stolfi, C., Marafini, I., De Simone, V., Pallone, F., Monteleone, G., 2013. The dual role of Smad7 in the control of cancer growth and metastasis. Int. J. Mol. Sci. 14, 23774-23790.
|
[148] |
Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M.C., Di Giacomo, V., Yosef, R., Pilpel, N., Krizhanovsky, V., Sharpe, J., Keyes, W.M., 2013. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119-1130.
|
[149] |
Sugiyama, A., Nagaki, M., Shidoji, Y., Moriwaki, H., Muto, Y., 1997. Regulation of cell cycle-related genes in rat hepatocytes by transforming growth factor beta1. Biochem. Biophys. Res. Commun. 238, 539-543.
|
[150] |
Sun, C.K., Chua, M.S., He, J., So, S.K., 2011. Suppression of glypican 3 inhibits growth of hepatocellular carcinoma cells through up-regulation of TGF-beta 2. Neoplasia (New York, N.Y.) 13, 735-U111.
|
[151] |
Sun, H., Peng, Z., Tang, H., Xie, D., Jia, Z., Zhong, L., Zhao, S., Ma, Z., Gao, Y., Zeng, L., Luo, R., Xie, K., 2017. Loss of KLF4 and consequential downregulation of Smad7 exacerbate oncogenic TGF-beta signaling in and promote progression of hepatocellular carcinoma. Oncogene 36, 2957-2968.
|
[152] |
Suzuki, H.I., Kiyono, K., Miyazono, K., 2010. Regulation of autophagy by transforming growth factor-beta (TGF-beta) signaling. Autophagy 6, 645-647.
|
[153] |
Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K., Mizushima, N., 2011. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800.
|
[154] |
Tang, B., Bottinger, E.P., Jakowlew, S.B., Bagnall, K.M., Mariano, J., Anver, M.R., Letterio, J.J., Wakefield, L.M., 1998. Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat. Med. 4, 802-807.
|
[155] |
Tang, Y., Katuri, V., Dillner, A., Mishra, B., Deng, C.X., Mishra, L., 2003. Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science 299, 574-577.
|
[156] |
Tominaga, K., Suzuki, H.I., 2019. TGF-beta signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci. 20, 5002.
|
[157] |
Tse, E.Y., Ko, F.C., Tung, E.K., Chan, L.K., Lee, T.K., Ngan, E.S., Man, K., Wong, A.S., Ng, I.O., Yam, J.W., 2012. Caveolin-1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis. J. Pathol. 226, 645-653.
|
[158] |
Tu, S., Huang, W., Huang, C., Luo, Z., Yan, X., 2019. Contextual regulation of TGF-beta signaling in liver cancer. Cells 8, 1235.
|
[159] |
Ullmann, P., Rodriguez, F., Schmitz, M., Meurer, S.K., Qureshi-Baig, K., Felten, P., Ginolhac, A., Antunes, L., Frasquilho, S., Zugel, N., Weiskirchen, R., Haan, S., Letellier, E., 2018. The miR-371 approximately 373 cluster represses colon cancer initiation and metastatic colonization by inhibiting the TGFBR2/ID1 signaling axis. Cancer Res. 78, 3793-3808.
|
[160] |
Valdes, F., Alvarez, A.M., Locascio, A., Vega, S., Herrera, B., Fernandez, M., Benito, M., Nieto, M.A., Fabregat, I., 2002. The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor beta in fetal rat hepatocytes. Mol. Cancer Res. 1, 68-78.
|
[161] |
Villanueva, A., 2019. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450-1462.
|
[162] |
Wakefield, L.M., Hill, C.S., 2013. Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat. Rev. Cancer 13, 328-341.
|
[163] |
Wang, C., Li, L., Duan, Q., Wang, Q., Chen, J., 2017. Kruppel-like factor 2 suppresses human gastric tumorigenesis through inhibiting PTEN/AKT signaling. Oncotarget 8, 100358-100370.
|
[164] |
Wildey, G.M., Howe, P.H., 2009. Runx1 is a co-activator with FOXO3 to mediate transforming growth factor beta (TGFbeta)-induced Bim transcription in hepatic cells. J. Biol. Chem. 284, 20227-20239.
|
[165] |
Wilkes, M.C., Repellin, C.E., Hong, M., Bracamonte, M., Penheiter, S.G., Borg, J.P., Leof, E.B., 2009. Erbin and the NF2 tumor suppressor Merlin cooperatively regulate cell-type-specific activation of PAK2 by TGF-beta. Dev. Cell 16, 433-444.
|
[166] |
Wu, J., Lu, M., Li, Y., Shang, Y.K., Wang, S.J., Meng, Y., Wang, Z., Li, Z.S., Chen, H., Chen, Z.N., Bian, H., 2016. Regulation of a TGF-beta1-CD147 self-sustaining network in the differentiation plasticity of hepatocellular carcinoma cells. Oncogene 35, 5468-5479.
|
[167] |
Wu, S.Y., Lan, S.H., Wu, S.R., Chiu, Y.C., Lin, X.Z., Su, I.J., Tsai, T.F., Yen, C.J., Lu, T.H., Liang, F.W., Li, C.Y., Su, H.J., Su, C.L., Liu, H.S., 2018. Hepatocellular carcinoma-related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology 68, 141-154.
|
[168] |
Xiong, X., Tu, S., Wang, J., Luo, S., Yan, X., 2019. CXXC5: A novel regulator and coordinator of TGF-beta, BMP and Wnt signaling. J. Cell Mol. Med. 23, 740-749.
|
[169] |
Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., Lowe, S.W., 2007. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656-660.
|
[170] |
Yamaguchi, T., Matsuzaki, K., Inokuchi, R., Kawamura, R., Yoshida, K., Murata, M., Fujisawa, J., Fukushima, N., Sata, M., Kage, M., Nakashima, O., Tamori, A., Kawada, N., Tsuneyama, K., Dooley, S., Seki, T., Okazaki, K., 2013. Phosphorylated Smad2 and Smad3 signaling: shifting between tumor suppression and fibro-carcinogenesis in chronic hepatitis C. Hepatol Res. 43, 1327-1342.
|
[171] |
Yamamoto, M., Fukuda, K., Miura, N., Suzuki, R., Kido, T., Komatsu, Y., 1998. Inhibition by dexamethasone of transforming growth factor beta1-induced apoptosis in rat hepatoma cells: a possible association with Bcl-xL induction. Hepatology 27, 959-966.
|
[172] |
Yamashita, M., Fatyol, K., Jin, C.Y., Wang, X.C., Liu, Z.G., Zhang, Y.E., 2008. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol. Cell 31, 918-924.
|
[173] |
Yan, X., Chen, Y.G., 2011. Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J. 434, 1-10.
|
[174] |
Yan, X., Liao, H., Cheng, M., Shi, X., Lin, X., Feng, X.H., Chen, Y.G., 2016. Smad7 protein interacts with receptor-regulated Smads (R-Smads) to inhibit transforming growth factor-beta (TGF-beta)/Smad signaling. J. Biol. Chem. 291, 382-392.
|
[175] |
Yan, X., Liu, Z., Chen, Y., 2009. Regulation of TGF-beta signaling by Smad7. Acta Biochim. Biophys. Sin. (Shanghai) 41, 263-272.
|
[176] |
Yan, X., Wu, J., Jiang, Q., Cheng, H., Han, J.J., Chen, Y.G., 2018a. CXXC5 suppresses hepatocellular carcinoma by promoting TGF-beta-induced cell cycle arrest and apoptosis. J. Mol. Cell Biol. 10, 48-59.
|
[177] |
Yan, X., Xiong, X., Chen, Y.G., 2018b. Feedback regulation of TGF-beta signaling. Acta Biochim. Biophys. Sin. (Shanghai) 50, 37-50.
|
[178] |
Yan, X., Zhang, J., Pan, L., Wang, P., Xue, H., Zhang, L., Gao, X., Zhao, X., Ning, Y., Chen, Y.G., 2011. TSC-22 promotes transforming growth factor beta-mediated cardiac myofibroblast differentiation by antagonizing Smad7 activity. Mol. Cell Biol. 31, 3700-3709.
|
[179] |
Yan, X., Zhang, J., Sun, Q., Tuazon, P.T., Wu, X., Traugh, J.A., Chen, Y.G., 2012. p21-Activated kinase 2 (PAK2) inhibits TGF-beta signaling in Madin-Darby canine kidney (MDCK) epithelial cells by interfering with the receptor-Smad interaction. J. Biol. Chem. 287, 13705-13712.
|
[180] |
Yang, P., Markowitz, G.J., Wang, X.F., 2014. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Natl. Sci. Rev. 1, 396-412.
|
[181] |
Yang, Y.A., Zhang, G.M., Feigenbaum, L., Zhang, Y.E., 2006. Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2. Cancer Cell 9, 445-457.
|
[182] |
Yasui, K., Konishi, C., Gen, Y., Endo, M., Dohi, O., Tomie, A., Kitaichi, T., Yamada, N., Iwai, N., Nishikawa, T., Yamaguchi, K., Moriguchi, M., Sumida, Y., Mitsuyoshi, H., Tanaka, S., Arii, S., Itoh, Y., 2015. EVI1, a target gene for amplification at 3q26, antagonizes transforming growth factor-beta-mediated growth inhibition in hepatocellular carcinoma. Cancer Sci. 106, 929-937.
|
[183] |
Yazdani, H.O., Huang, H., Tsung, A., 2019. Autophagy: dual response in the development of hepatocellular carcinoma. Cells 8, 91.
|
[184] |
Yewale, C., Baradia, D., Vhora, I., Patil, S., Misra, A., 2013. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 34, 8690-8707.
|
[185] |
Yoo, J., Ghiassi, M., Jirmanova, L., Balliet, A.G., Hoffman, B., Fornace, A.J., Jr., Liebermann, D.A., Bottinger, E.P., Roberts, A.B., 2003. Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J. Biol. Chem. 278, 43001-43007.
|
[186] |
Yoon, G., Kim, H.J., Yoon, Y.S., Cho, H., Lim, I.K., Lee, J.H., 2002. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 366, 613-621.
|
[187] |
Yoshida, K., Matsuzaki, K., Murata, M., Yamaguchi, T., Suwa, K., Okazaki, K., 2018. Clinico-pathological importance of TGF-beta/phospho-Smad signaling during human hepatic fibrocarcinogenesis. Cancers (Basel) 10, 183.
|
[188] |
Yoshimoto, S., Loo, T.M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Iwakura, Y., Oshima, K., Morita, H., Hattori, M., Honda, K., Ishikawa, Y., Hara, E., Ohtani, N., 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97-101.
|
[189] |
Yu, J., Zhang, L., Chen, A., Xiang, G., Wang, Y., Wu, J., Mitchelson, K., Cheng, J., Zhou, Y., 2008. Identification of the gene transcription and apoptosis mediated by TGF-beta-Smad2/3-Smad4 signaling. J. Cell Physiol. 215, 422-433.
|
[190] |
Yu, Y., Feng, X.H., 2019. TGF-beta signaling in cell fate control and cancer. Curr. Opin. Cell Biol. 61, 56-63.
|
[191] |
Yu, Y., Gu, S., Li, W., Sun, C., Chen, F., Xiao, M., Wang, L., Xu, D., Li, Y., Ding, C., Xia, Z., Li, Y., Ye, S., Xu, P., Zhao, B., Qin, J., Chen, Y.G., Lin, X., Feng, X.H., 2017. Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-beta signaling. Proc. Natl. Acad. Sci. U. S. A. 114, 10113-10118.
|
[192] |
Yuan, B., Liu, J., Cao, J., Yu, Y., Zhang, H., Wang, F., Zhu, Y., Xiao, M., Liu, S., Ye, Y., Ma, L., Xu, D., Xu, N., Li, Y., Zhao, B., Xu, P., Jin, J., Xu, J., Chen, X., Shen, L., Lin, X., Feng, X.H., 2019. PTPN3 acts as a tumor suppressor and boosts TGF-beta signaling independent of its phosphatase activity. EMBO J. 38, e99945.
|
[193] |
Yue, Z., Jin, S., Yang, C., Levine, A.J., Heintz, N., 2003. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. U. S. A. 100, 15077-15082.
|
[194] |
Zhang, H., Ozaki, I., Mizuta, T., Hamajima, H., Yasutake, T., Eguchi, Y., Ideguchi, H., Yamamoto, K., Matsuhashi, S., 2006. Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepatocellular carcinoma. Oncogene 25, 6101-6112.
|
[195] |
Zhang, H., Ozaki, I., Mizuta, T., Yoshimura, T., Matsuhashi, S., Eguchi, Y., Yasutake, T., Hisatomi, A., Sakai, T., Yamamoto, K., 2004. Transforming growth factor-beta 1-induced apoptosis is blocked by beta 1-integrin-mediated mitogen-activated protein kinase activation in human hepatoma cells. Cancer Sci. 95, 878-886.
|
[196] |
Zhang, L., Zhou, F., ten Dijke, P., 2013a. Signaling interplay between transforming growth factor-beta receptor and PI3K/AKT pathways in cancer. Trends Biochem. Sci. 38, 612-620.
|
[197] |
Zhang, L., Zhou, F.F., de Vinuesa, A.G., de Kruijf, E.M., Mesker, W.E., Hui, L., Drabsch, Y., Li, Y.H., Bauer, A., Rousseau, A., Sheppard, K.A., Mickanin, C., Kuppen, P.J.K., Lu, C.X., ten Dijke, P., 2013b. TRAF4 promotes TGF-beta receptor signaling and drives breast cancer metastasis. Mol. Cell 51, 559-572.
|
[198] |
Zhang, Q., Xiao, M., Gu, S., Xu, Y., Liu, T., Li, H., Yu, Y., Qin, L., Zhu, Y., Chen, F., Wang, Y., Ding, C., Wu, H., Ji, H., Chen, Z., Zu, Y., Malkoski, S., Li, Y., Liang, T., Ji, J., Qin, J., Xu, P., Zhao, B., Shen, L., Lin, X., Feng, X.H., 2019. ALK phosphorylates SMAD4 on tyrosine to disable TGF-beta tumour suppressor functions. Nat. Cell Biol. 21, 179-189.
|
[199] |
Zhang, X., Fan, Q., Li, Y., Yang, Z., Yang, L., Zong, Z., Wang, B., Meng, X., Li, Q., Liu, J., Li, H., 2017a. Transforming growth factor-beta1 suppresses hepatocellular carcinoma proliferation via activation of Hippo signaling. Oncotarget 8, 29785-29794.
|
[200] |
Zhang, Y., Alexander, P.B., Wang, X.F., 2017b. TGF-beta family signaling in the control of cell proliferation and survival. Cold Spring Harb. Perspect. Biol. 9, a022145.
|
[201] |
Zhang, Y.E., 2017. Non-Smad signaling pathways of the TGF-beta family. Cold Spring Harb. Perspect. Biol. 9, a022129.
|
[202] |
Zhang, Y.E., 2018. Mechanistic insight into contextual TGF-beta signaling. Curr. Opin. Cell Biol. 51, 1-7.
|
[203] |
Zhao, X., Liu, Y., Du, L., He, L., Ni, B., Hu, J., Zhu, D., Chen, Q., 2015. Threonine 32 (Thr32) of FoxO3 is critical for TGF-beta-induced apoptosis via Bim in hepatocarcinoma cells. Protein Cell 6, 127-138.
|
[204] |
Zhu, H., Wu, K., Yan, W., Hu, L., Yuan, J., Dong, Y., Li, Y., Jing, K., Yang, Y., Guo, M., 2013. Epigenetic silencing of DACH1 induces loss of transforming growth factor-beta1 antiproliferative response in human hepatocellular carcinoma. Hepatology (Baltimore, Md.) 58, 2012-2022.
|
[205] |
Zucman-Rossi, J., Villanueva, A., Nault, J.C., Llovet, J.M., 2015. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226-1239 e1224.
|