5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 9
Sep.  2020
Turn off MathJax
Article Contents

The synergistic role of Pu.1 and Fms in zebrafish osteoclast-reducing osteopetrosis and possible therapeutic strategies

doi: 10.1016/j.jgg.2020.09.002
More Information
  • Osteoclasts are bone resorption cells of myeloid origin. Osteoclast defects can lead to osteopetrosis, a genetic disorder characterized by bone sclerosis for which there is no effective drug treatment. It is known that Pu.1 and Fms are key regulators in myelopoiesis, and their defects in mice can lead to reduced osteoclast numbers and consequent osteopetrosis. Yet how Pu.1 and Fms genetically interact in the development of osteoclasts and the pathogenesis of osteopetrosis is still unclear. Here, we characterized pu.1;fms double-deficient zebrafish, which exhibited a greater deficiency of functional osteoclasts and displayed more severe osteopetrotic symptoms than the pu.1 or fms single mutants, suggesting a synergistic function of Pu.1 and Fms in the regulation of osteoclast development. We further demonstrated that Pu.1 plays a dominant role in osteoclastogenesis, whereas Fms plays a dominant role in osteoclast maturation. Importantly, treatment with the drug retinoic acid significantly relieved the different degrees of osteopetrosis symptoms in these models by increasing the number of functional osteoclasts. Thus, we report the development of valuable animal models of osteopetrosis, and our results shed light on drug development for antiosteopetrosis therapy.
  • loading
  • [1]
    Anderson, K.L., Smith, K.A., Conners, K., McKercher, S.R., Maki, R.A., Torbett, B.E., 1998. Myeloid development is selectively disrupted in PU.1 null mice. Blood 91, 3702-3710.
    [2]
    Athanasou, N.A., 1996. Cellular biology of bone-resorbing cells. J. Bone Jt. Surg. Am. 78, 1096-1112.
    [3]
    Babb, S.G., Matsudaira, P., Sato, M., Correia, I., Lim, S.S., 1997. Fimbrin in podosomes of monocyte-derived osteoclasts. Cell Motil. Cytoskelet. 37, 308-325.
    [4]
    Balemans, W., Van Wesenbeeck, L., Van Hul, W., 2005. A clinical and molecular overview of the human osteopetroses. Calcif. Tissue Int. 77, 263-274.
    [5]
    Benichou, O.D., Laredo, J.D., de Vernejoul, M.C., 2000. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone 26, 87-93.
    [6]
    Carey, H.A., Hildreth 3rd, B.E., Geisler, J.A., Nickel, M.C., Cabrera, J., Ghosh, S., Jiang, Y., Yan, J., Lee, J., Makam, S., Young, N.A., Valiente, G.R., Jarjour, W.N., Huang, K., Rosol, T.J., Toribio, R.E., Charles, J.F., Ostrowski, M.C., Sharma, S.M., 2018. Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Res. 6, 8.
    [7]
    Carey, H.A., Hildreth 3rd, B.E., Samuvel, D.J., Thies, K.A., Rosol, T.J., Toribio, R.E., Charles, J.F., Ostrowski, M.C., Sharma, S.M., 2019. Eomes partners with PU.1 and MITF to regulate transcription factors critical for osteoclast differentiation. iScience 11, 238-245.
    [8]
    Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E.M., Xie, C., 2018. Osteoblast-osteoclast interactions. Connect. Tissue Res.. 59, 99-107.
    [9]
    Conaway, H.H., Pirhayati, A., Persson, E., Pettersson, U., Svensson, O., Lindholm, C., Henning, P., Tuckermann, J., Lerner, U.H., 2011. Retinoids stimulate periosteal bone resorption by enhancing the protein RANKL, a response inhibited by monomeric glucocorticoid receptor. J. Biol. Chem. 286, 31425-31436.
    [10]
    Dai, X.M., Ryan, G.R., Hapel, A.J., Dominguez, M.G., Russell, R.G., Kapp, S., Sylvestre, V., Stanley, E.R., 2002. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111-120.
    [11]
    de Vrieze, E., Sharif, F., Metz, J.R., Flik, G., Richardson, M.K., 2011. Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales. Bone 48, 704-712.
    [12]
    DeKoter, R.P., Walsh, J.C., Singh, H., 1998. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J.. 17, 4456-4468.
    [13]
    Droin, N., Solary, E., 2010. Editorial: CSF1R, CSF-1, and IL-34, a “menage a trois” conserved across vertebrates. J. Leukoc. Biol. 87, 745-747.
    [14]
    Flanagan, A.M., Massey, H.M., Wilson, C., Vellodi, A., Horton, M.A., Steward, C.G., 2002. Macrophage colony-stimulating factor and receptor activator NF-kappaB ligand fail to rescue osteoclast-poor human malignant infantile osteopetrosis in vitro. Bone 30, 85-90.
    [15]
    Fotiadou, A., Arvaniti, M., Kiriakou, V., Tsitouridis, I., 2009. Type II autosomal dominant osteopetrosis: radiological features in two families containing five members with asymptomatic and uncomplicated disease. Skelet. Radiol. 38, 1015-1021.
    [16]
    Ghisletti, S., Barozzi, I., Mietton, F., Polletti, S., De Santa, F., Venturini, E., Gregory, L., Lonie, L., Chew, A., Wei, C.L., Ragoussis, J., Natoli, G., 2010. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317-328.
    [17]
    Glass, C.K., Natoli, G., 2016. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26-33.
    [18]
    Goldman, R., 1987. Modulation of transglutaminase activity in mononuclear phagocytes and macrophage-like tumor cell lines by differentiation agents. Exp. Cell Res. 168, 31-43.
    [19]
    Guo, L., Bertola, D.R., Takanohashi, A., Saito, A., Segawa, Y., Yokota, T., Ishibashi, S., Nishida, Y., Yamamoto, G.L., Franco, J.F.D., Honjo, R.S., Kim, C.A., Musso, C.M., Timmons, M., Pizzino, A., Taft, R.J., Lajoie, B., Knight, M.A., Fischbeck, K.H., Singleton, A.B., Ferreira, C.R., Wang, Z., Yan, L., Garbern, J.Y., Simsek-Kiper, P.O., Ohashi, H., Robey, P.G., Boyde, A., Matsumoto, N., Miyake, N., Spranger, J., Schiffmann, R., Vanderver, A., Nishimura, G., Passos-Bueno, M.R.D., Simons, C., Ishikawa, K., Ikegawa, S., 2019. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-pyle disease spectrum and degenerative encephalopathy with brain malformation. Am. J. Hum. Genet. 104, 925-935.
    [20]
    Hayman, A.R., Bune, A.J., Bradley, J.R., Rashbass, J., Cox, T.M., 2000a. Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J. Histochem. Cytochem. 48, 219-228.
    [21]
    Hayman, A.R., Bune, A.J., Cox, T.M., 2000b. Widespread expression of tartrate-resistant acid phosphatase (Acp 5) in the mouse embryo. J. Anat. 196 ( Pt 3), 433-441.
    [22]
    Hayman, A.R., Macary, P., Lehner, P.J., Cox, T.M., 2001. Tartrate-resistant acid phosphatase (Acp 5): identification in diverse human tissues and dendritic cells. J. Histochem. Cytochem. 49, 675-684.
    [23]
    Heymann, D., Guicheux, J., Gouin, F., Passuti, N., Daculsi, G., 1998. Cytokines, growth factors and osteoclasts. Cytokine 10, 155-168.
    [24]
    Huang, M.E., Ye, Y.C., Chen, S.R., Chai, J.R., Lu, J.X., Zhoa, L., Gu, L.J., Wang, Z.Y., 1988. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567-572.
    [25]
    Jeradi, S., Hammerschmidt, M., 2016. Retinoic acid-induced premature osteoblast-to-preosteocyte transitioning has multiple effects on calvarial development. Development 143, 1205-1216.
    [26]
    Jin, H., Li, L., Xu, J., Zhen, F., Zhu, L., Liu, P.P., Zhang, M., Zhang, W., Wen, Z., 2012. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood 119, 5239-5249.
    [27]
    Kaji, H., Sugimoto, T., Kanatani, M., Fukase, M., Kumegawa, M., Chihara, K., 1995. Retinoic acid induces osteoclast-like cell formation by directly acting on hemopoietic blast cells and stimulates osteopontin mRNA expression in isolated osteoclasts. Life Sci.. 56, 1903-1913.
    [28]
    Kneissel, M., Studer, A., Cortesi, R., Susa, M., 2005. Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone 36, 202-214.
    [29]
    Krysinska, H., Hoogenkamp, M., Ingram, R., Wilson, N., Tagoh, H., Laslo, P., Singh, H., Bonifer, C., 2007. A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol. Cell Biol. 27, 878-887.
    [30]
    Lawrence, T., Natoli, G., 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750-761.
    [31]
    Li, J., Chen, K., Zhu, L., Pollard, J.W., 2006. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis 44, 328-335.
    [32]
    Li, N., Felber, K., Elks, P., Croucher, P., Roehl, H.H., 2009. Tracking gene expression during zebrafish osteoblast differentiation. Dev. Dynam. 238, 459-466.
    [33]
    Lind, T., Lind, P.M., Jacobson, A., Hu, L., Sundqvist, A., Risteli, J., Yebra-Rodriguez, A., Larsson, S., Rodriguez-Navarro, A., Andersson, G., Melhus, H., 2011. High dietary intake of retinol leads to bone marrow hypoxia and diaphyseal endosteal mineralization in rats. Bone 48, 496-506.
    [34]
    MacRae, C.A., Peterson, R.T., 2015. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14, 721-731.
    [35]
    Matsuo, K., Irie, N., 2008. Osteoclast-osteoblast communication. Arch. Biochem. Biophys. 473, 201-209.
    [36]
    McGowan, N.W., MacPherson, H., Janssens, K., Van Hul, W., Frith, J.C., Fraser, W.D., Ralston, S.H., Helfrich, M.H., 2003. A mutation affecting the latency-associated peptide of TGFbeta1 in Camurati-Engelmann disease enhances osteoclast formation in vitro. J. Clin. Endocrinol. Metab. 88, 3321-3326.
    [37]
    McKercher, S.R., Torbett, B.E., Anderson, K.L., Henkel, G.W., Vestal, D.J., Baribault, H., Klemsz, M., Feeney, A.J., Wu, G.E., Paige, C.J., Maki, R.A., 1996. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J.. 15, 5647-5658.
    [38]
    Menegola, E., Broccia, M.L., Giavini, E., 2001. Atlas of rat fetal skeleton double stained for bone and cartilage. Teratology 64, 125-133.
    [39]
    Monies, D., Maddirevula, S., Kurdi, W., Alanazy, M.H., Alkhalidi, H., Al-Owain, M., Sulaiman, R.A., Faqeih, E., Goljan, E., Ibrahim, N., Abdulwahab, F., Hashem, M., Abouelhoda, M., Shaheen, R., Arold, S.T., Alkuraya, F.S., 2017. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation. Genet. Med. 19, 1144-1150.
    [40]
    Morley, S.C., 2012. The actin-bundling protein L-plastin: a critical regulator of immune cell function. Int. J. Cell Biol. 2012, 935173.
    [41]
    Oikawa, T., Yamada, T., Kihara-Negishi, F., Yamamoto, H., Kondoh, N., Hitomi, Y., Hashimoto, Y., 1999. The role of Ets family transcription factor PU.1 in hematopoietic cell differentiation, proliferation and apoptosis. Cell Death Differ.. 6, 599-608.
    [42]
    Orchard, P.J., Fasth, A.L., Le Rademacher, J., He, W., Boelens, J.J., Horwitz, E.M., Al-Seraihy, A., Ayas, M., Bonfim, C.M., Boulad, F., Lund, T., Buchbinder, D.K., Kapoor, N., O'Brien, T.A., Perez, M.A., Veys, P.A., Eapen, M., 2015. Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood 126, 270-276.
    [43]
    Parichy, D.M., Ransom, D.G., Paw, B., Zon, L.I., Johnson, S.L., 2000. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development 127, 3031-3044.
    [44]
    Park, S.J., Park, D.R., Bhattarai, D., Lee, K., Kim, J., Bae, Y.S., Lee, S.Y., 2014. 2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate suppresses osteoclast maturation and bone resorption by targeting macrophage-colony stimulating factor signaling. Mol. Cells 37, 628-635.
    [45]
    Pasqualetti, S., Banfi, G., Mariotti, M., 2012. Osteoblast and osteoclast behavior in zebrafish cultured scales. Cell Tissue Res.. 350, 69-75.
    [46]
    Pollard, J.W., 1997. Role of colony-stimulating factor-1 in reproduction and development. Mol. Reprod. Dev. 46, 51-54.
    [47]
    Popkov, D., 2017. Guided growth for valgus deformity correction of knees in a girl with osteopetrosis: a case report. Strateg. Trauma Limb Reconstr. 12, 197-204.
    [48]
    Povoroznyuk, V. V, Dedukh, N. V, Bystrytska, M.A., Musiienko, A.S., 2019. Osteopetrosis: classification, pathomorphology, genetic disorders, clinical manifestations (literature review and clinical case report). Pain. Joints. Spine 9, 135-142.
    [49]
    Reddy, M.A., Yang, B.S., Yue, X., Barnett, C.J., Ross, I.L., Sweet, M.J., Hume, D.A., Ostrowski, M.C., 1994. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J. Exp. Med. 180, 2309-2319.
    [50]
    Schnedl, W., Mikelsaar, A. V, Breitenbach, M., Dann, O., 1977. DIPI and DAPI: fluorescence banding with only negliglible fading. Hum. Genet. 36, 167-172.
    [51]
    Schneider, G.B., Relfson, M., Nicolas, J., 1986. Pluripotent hemopoietic stem cells give rise to osteoclasts. Am. J. Anat. 177, 505-511.
    [52]
    Scott, E.W., Simon, M.C., Anastasi, J., Singh, H., 1994. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science (80-. ). 265, 1573-1577.
    [53]
    Stark, Z., Savarirayan, R., 2009. Osteopetrosis. Orphanet J. Rare Dis. 4, 5.
    [54]
    Teti, A., Migliaccio, S., Taranta, A., Bernardini, S., De Rossi, G., Luciani, M., Iacobini, M., De Felice, L., Boldrini, R., Bosman, C., Corsi, A., Bianco, P., 1999. Mechanisms of osteoclast dysfunction in human osteopetrosis: abnormal osteoclastogenesis and lack of osteoclast-specific adhesion structures. J. Bone Min. Res. 14, 2107-2117.
    [55]
    Tondravi, M.M., McKercher, S.R., Anderson, K., Erdmann, J.M., Quiroz, M., Maki, R., Teitelbaum, S.L., 1997. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81-84.
    [56]
    Tushinski, R.J., Oliver, I.T., Guilbert, L.J., Tynan, P.W., Warner, J.R., Stanley, E.R., 1982. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28, 71-81.
    [57]
    Udagawa, N., Takahashi, N., Akatsu, T., Tanaka, H., Sasaki, T., Nishihara, T., Koga, T., Martin, T.J., Suda, T., 1990. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. U.S.A. 87, 7260-7264.
    [58]
    Van Wesenbeeck, L., Van Hul, W., 2005. Lessons from osteopetrotic mutations in animals: impact on our current understanding of osteoclast biology. Crit. Rev. Eukaryot. Gene Expr. 15, 133-162.
    [59]
    Webb, S.E., Pollard, J.W., Jones, G.E., 1996. Direct observation and quantification of macrophage chemoattraction to the growth factor CSF-1. J. Cell Sci. 109 ( Pt 4), 793-803.
    [60]
    Westerfield, M., 1994. The Zebrafish Book: a Guide for the Laboratory Use of Zebrafish Danio (Brachydanio) Rerio. Eugene Univ. Oregon Press.
    [61]
    Westerlund, L.E., Blanco, J.S., Chhabra, A., 2000. Posterior spinal instrumentation and fusion of a neuromuscular scoliosis in a patient with autosomal dominant osteopetrosis. Spine (Phila Pa 1976) 25, 265-267.
    [62]
    Witten, P.E., Hansen, A., Hall, B.K., 2001. Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth. J. Morphol. 250, 197-207.
    [63]
    Yu, T., Guo, W., Tian, Y., Xu, J., Chen, J., Li, L., Wen, Z., 2017. Distinct regulatory networks control the development of macrophages of different origins in zebrafish. Blood 129, 509-519.
    [64]
    Zaret, K.S., Carroll, J.S., 2011. Pioneer transcription factors: establishing competence for gene expression. Genes Dev.. 25, 2227-2241.
    [65]
    Zylberberg, L., Bereiter-Hahn, J., Sire, J.Y., 1988. Cytoskeletal organization and collagen orientation in the fish scales. Cell Tissue Res.. 253, 597-607.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (6)

    Article Metrics

    Article views (75) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return