5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 9
Sep.  2020
Turn off MathJax
Article Contents

CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability

doi: 10.1016/j.jgg.2020.08.004
More Information
  • The TaQ alleles as one of the AP2-like transcription factors in common wheat (Triticum aestivum) play an important role in the evolution of spike characteristics from wild and domesticated emmer to modern wheat cultivars. Its loss-of-function mutant not only changed threshability and spike architecture but also affected plant height, flowering time, and floret structure. However, the comprehensive functions of TaAQ and TaDq genes in wheat have not been fully elucidated yet. Here, CRISPR/SpCas9 was used to edit wheat TaAQ and TaDq. We obtained homozygous plants in the T1 generation with loss of function of only TaAQ or TaDq and simultaneous loss of function of TaAQ and TaDq to analyze the effect of these genes on wheat spikes and floret shapes. The results demonstrated that the TaAQ-edited plants and the TaAQ and TaDq simultaneously-edited plants were nearly similar in spike architecture, whereas the TaDq-edited plants were different from the wild-type ones only in plant height. Moreover, the TaAQ-edited plants or the TaAQ and TaDq simultaneously-edited plants were more brittle than the wild-type and the TaDq-edited plants. Based on the expression profiling, we postulated that the VRN1, FUL2, SEP2, SEP5, and SEP6 genes might affect the number of spikelets and florets per spike in wheat by regulating the expression of TaQ. Combining the results of this report and previous reports, we conceived a regulatory network of wheat traits, including plant height, spike shape, and floral organs, which were influenced by AP2-like family genes. The results achieved in this study will help us to understand the regulating mechanisms of TaAQ and TaDq alleles on wheat floral organs and inflorescence development.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Abe, F., Haque, E., Hisano, H., Tanaka, T., Kamiya, Y., Mikami, M., Kawaura, K., Endo, M., Onishi, K., Hayashi, T., Sato, K., 2019. Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Rep.. 28, 1362-1369.
    [2]
    Aukerman, M.J., Sakai, H., 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741.
    [3]
    Brown, R.H., Bregitzer, P., 2011. A Ds insertional mutant of a barley miR172 gene results in indeterminate spikelet development. Crop Sci. 51, 1664-1672.
    [4]
    Causier, B., Ashworth, M., Guo, W., Davies, B., 2012. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol.. 158, 423-438.
    [5]
    Chuck, G., Meeley, R., Hake, S., 2008. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 135, 3013-3019.
    [6]
    Chuck, G., Meeley, R., Irish, E., Sakai, H., Hake, S., 2007. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet. 39, 1517-1521.
    [7]
    Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du X, Xu, Q., Chong, K., Theissen, G., Meng, Z., 2010. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J.. 61, 767-781.
    [8]
    Debernardi, J.M., Greenwood, J.R., Finnegan, E.J., Jernstedt, J., Dubcovsky, J., 2020. APETALA2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. Plant J.. 101, 171-187.
    [9]
    Debernardi, J.M., Lin, H., Chuck, G., Faris, J.D., Dubcovsky, J., 2017. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144, 1966-1975.
    [10]
    Ditta, G., Stanfield, S., Corbin, D., Helinski, D.R., 1980. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. U. S. A. 77, 7347-7351.
    [11]
    Drews, G.N., Bowman, J.L., Meyerowitz, E.M., 1991. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991-1002.
    [12]
    Faris, J.D., Simons, K.J., Zhang, Z., Gill, B.S., 2005. The wheat super domestication gene Q. Front. Wheat Biosci. 100, 129-148.
    [13]
    Hong, L.L., Qian, Q., Zhu, K.M., Tang, D., Huang, Z.J., Gao, L., Li, M., Gu, M.H., Cheng, Z.K., 2010. ELE restrains empty glumes from developing into lemmas. J. Genet. Genomics 37, 101-115.
    [14]
    Howells, R.M., Craze, M., Bowden, S., Wallington, E.J., 2018. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biol.. 18, 215.
    [15]

    10.1007/978-1-4939-1695-5_15

    [16]
    Jiang, Y.F., Chen, Q., Wang, Y., Guo, Z.R., Xu, B.J., Zhu, J., Zhang, Y.Z., Gong, X., Luo, C.H., Wu, W., Liu, C.H., Kong, L., Deng, M., Jiang, Q.T., Lan, X.J., Wang, J.R., Chen, G.Y., Zheng, Y.L., Wei, Y.M., Qi, P.F., 2019. Re-acquisition of the brittle rachis trait via a transposon insertion in domestication gene Q during wheat de-domestication. New Phytol.. 224, 961-973.
    [17]
    Jiao, R., Gao, C., 2016. The CRISPR/Cas9 genome editing revolution. J. Genet. Genomics 43, 227-228.
    [18]
    Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., Park, C.M., 2007. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19, 2736-2748.
    [19]
    Kato, K., Sonokawa, R., Miura, H., Sawada, S., 2003. Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A. Plant Breed. 122, 489-492.
    [20]
    Lee, D.Y., An, G., 2012. Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J.. 69, 445-461.
    [21]
    Liang, Z., Chen, K.L., Li, T.D., Zhang, Y., Wang, Y.P., Zhao, Q., Liu, J.X., Zhang, H.W., Liu, C.M., Ran, Y.D., Gao, C.X., 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261.
    [22]
    Liang, Z., Chen, K.L., Zhang, Y., Liu, J.X., Yin, K.Q., Qiu, J.L., Gao, C.X., 2018. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 13, 413-430.
    [23]
    Li, C., Lin, H., Chen, A., Lau, M., Jernstedt, J., Dubcovsky, J., 2019. Wheat VRN1 and FUL2 play critical and redundant roles in spikelet development and spike determinacy. Development 146, dev175398.
    [24]
    Liu, C., Zhong, Y., Qi, X., Chen, M., Liu, Z., Tian, X., Li, J., Jiao, Y., Wang, D., Wang, Y., Li, M., Xin, M., Liu, W., Jin, W., Chen, S., 2020a. Extension of the in vivo haploid induction system from maize to wheat. Plant Biotechnol. J. 18, 316-318.
    [25]
    Liu, H., Wang, K., Jia, Z., Gong, Q., Lin, Z., Du, L., Pei, X., Ye, X., 2020b. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot. 71, 1337-1349.
    [26]
    Liu, P., Liu, J., Dong, H., Sun, J., 2018. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density. Plant Biotechnol. J. 16, 495-506.
    [27]
    Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Chen, Y., Guo, J., Chen, L., Zhao, X., Dong, Z., Liu, Y.G., 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274-1284.
    [28]
    Malcomber, S.T., Kellogg, E.A., 2005. SEPALLATA gene diversification: brave new whorls. Trends Plant Sci.. 10, 427-435.
    [29]
    McSteen, P., Laudencia-Chingcuanco, D., Colasanti, J., 2000. A floret by any other name: control of meristem identity in maize. Trends Plant Sci.. 5, 61-66.
    [30]
    Muramatsu, M., 1963. Dosage effect of the spelta gene q of hexaploid wheat. Genetics, 48, 469.
    [31]
    Muramatsu, M., 1986. The vulgare super gene, Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can. J. Genet. Cytol. 28, 30-41.
    [32]
    Poethig, R.S., 1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250, 923-930.
    [33]
    Sanchez-Leon, S., Gil-Humanes, J., Ozuna, C.V., Gimenez, M.I.A.J., Sousa, C., Voytas, D.F., Barro, F., 2018. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 16, 902-910.
    [34]
    Sakuma, S., Golan, G., Guo, Z., Ogawa, T., Tagiri, A., Sugimoto, K., Bernhardt, N., Brassac, J., Mascher, M., Hensel, G., Ohnishi, S., Jinno, H., Yamashita, Y., Ayalon, I., Peleg, Z., Schnurbusch, T., Komatsuda, T., 2019. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc. Natl. Acad. Sci. U. S. A. 116, 5182-5187.
    [35]
    Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z., Tai, Y.S., Gill, B.S., Faris, J.D., 2006. Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547-555.
    [36]
    Song, G., Sun, G., Kong, X., Jia, M., Wang, K., Ye, X., Zhou, Y., Geng, S., Mao, L., Li, A., 2019. The soft glumes of common wheat are sterile-lemmas as determined by the domestication gene Q. Crop J. 7, 113-117.
    [37]
    Tang, M., Li, G., Chen, M., 2007. The phylogeny and expression pattern of APETALA2-like genes in rice. J. Genet. Genomics 34, 930-938.
    [38]
    Varkonyi-Gasic, E., Lough, R.H., Moss, S.M., Wu, R., Hellens, R.P., 2012. Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172. Plant Mol. Biol. 78, 417-429.
    [39]
    Wang, K., Liu, H., Du, L.m Ye, X., 2017. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol. J. 15, 614-623.
    [40]
    Wang, M., Wang, S.B., Liang, Z., Shi, W.M., Gao, C.X., Xia, G.M., 2018. From genetic stock to genome editing: gene exploitation in wheat. Trends Biotechnol.. 36, 160-172.
    [41]
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947.
    [42]
    Wang, Y., Li, J., 2008. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253-279.
    [43]
    Whipple, C.J., Ciceri, P., Padilla, C.M., Ambrose, B.A., Bandong, S.L., Schmidt, R.J., 2004. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131, 6083-6091.
    [44]
    Wu, D., Liang, W., Zhu, W., Chen, M., Ferrandiz, C., Burton, R.A., Dreni, L., Zhang, D., 2018. Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice. Plant Physiol.. 176, 1646-1664.
    [45]
    Yamaguchi, T., Lee, D.Y., Miyao, A., Hirochika, H., An, G., Hirano, H., 2006. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18, 15-28.
    [46]
    Yoshida, A., Ohmori, Y., Kitano, H., Taguchi-Shiobara, F., Hirano, H., 2012. ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J.. 70, 327-339.
    [47]
    Zhang, K., Liu, J., Zhang, Y., Yang, Z., Gao, C., 2015. Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. J. Genet. Genomics 42, 39-42.
    [48]
    Zhang, S., Zhang, R., Gao, J., Gu, T., Song, G., Li, W., Li, D., Li, Y., Li, G., 2019a. Highly efficient and heritable targeted mutagenesis in wheat via the Agrobacterium tumefaciens-mediated CRISPR/Cas9 system. Int. J. Mol. Sci. 20, 4257.
    [49]
    Zhang, Y., Li, D., Zhang, D., Zhao, X., Cao, X., Dong, L., Liu, J., Chen, K., Zhang, H., Gao, C., Wang, D., 2018. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J.. 94, 857-866.
    [50]
    Zhang, Y.W., Bai, Y., Wu, G.H., Zou, S.H., Chen, Y.F., Gao, C.X, Tang, D.Z., 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J.. 91, 714-724.
    [51]
    Zhang, Z., Belcram, H., Gornicki, P., Charles, M., Just, J., Huneau, C., Magdelenat, G., Couloux, A., Samain, S., Gill, B., Rasmussen, J., Barbe, V., Faris, J., Chalhoub, B., 2011. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc. Natl. Acad. Sci. U. S. A. 108, 18737-18742.
    [52]
    Zhang, Z., Hua, L., Gupta, A., Tricoli, D., Edwards, K.J., Yang, B., Li, W., 2019b. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. J. 17, 1623-1635.
    [53]
    Zhang, Z., Li, A., Song, G., Geng, S., Gill, B.S., Faris, J.D., Mao, L., 2020. Comprehensive analysis of Q gene near isogenic lines reveals key molecular pathways for wheat domestication and improvement. Plant J.. 102, 299-310.
    [54]
    Zhao, K., Xiao, J., Liu, Y., Chen, S., Yuan, C., Cao, A., You, F., Yang, D., An, S., Wang, H., Wang, X., 2018. Rht23 (5Dq′) likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor. Appl. Genet. 131, 1825-1834.
    [55]
    Zhu, J., Song, N., Sun, S., Yang, W., Zhao, H., Song, W., Lai, J., 2016. Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J. Genet. Genomics 43, 25-36.
    [56]
    Zhu, Q.H., Helliwell, C.A., 2011. Regulation of flowering time and floral patterning by miR172. J. Exp. Bot. 62, 487-495.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (7)  / Tables (2)

    Article Metrics

    Article views (109) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return