5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 9
Sep.  2020
Turn off MathJax
Article Contents

Comprehensive lipidomics in apoM-/- mice reveals an overall state of metabolic distress and attenuated hepatic lipid secretion into the circulation

doi: 10.1016/j.jgg.2020.08.003
More Information
  • Apolipoprotein M (apoM) participates in both high-density lipoprotein and cholesterol metabolism. Little is known about how apoM affects lipid composition of the liver and serum. In this study, we systemically investigated the effects of apoM on liver and plasma lipidomes and how apoM participates in lipid cycling, via apoM knockout in mice and the human SMMC-7721 cell line. We used integrated mass spectrometry-based lipidomics approaches to semiquantify more than 600 lipid species from various lipid classes, which include free fatty acids, glycerolipids, phospholipids, sphingolipids, glycosphingolipids, cholesterol, and cholesteryl esters (CEs), in apoM mouse. Hepatic accumulation of neutral lipids, including CEs, triacylglycerols, and diacylglycerols, was observed in apoM mice; while serum lipidomic analyses showed that, in contrast to the liver, the overall levels of CEs and saturated/monounsaturated fatty acids were markedly diminished. Furthermore, the level of ApoB-100 was dramatically increased in the liver, whereas significant reductions in both ApoB-100 and low-density lipoprotein (LDL) cholesterol were observed in the serum ofapoM mice, which indicated attenuated hepatic LDL secretion into the circulation. Lipid profiles and proinflammatory cytokine levels indicated that apoM leads to hepatic steatosis and an overall state of metabolic distress. Taken together, these results revealed that apoM knockout leads to hepatic steatosis, impaired lipid secretion, and an overall state of metabolic distress.
  • These authors equally contributed to this work.
  • loading
  • [1]
    Ahmed, M., 2015. Non-alcoholic fatty liver disease in 2015. World J. Hepatol. 7, 1450-1459.
    [2]
    Ana Jonas, M.C.P. (2008) Biochemistry of Lipids, Lipoproteins and Membranes (fifth ed.). Elsevier Inc., USA, pp. 485-506.
    [3]
    Aon, M.A., Bernier, M., Mitchell, S.J., Di Germanio, C., Mattison, J.A., Ehrlich, M.R., Colman, R.J., Anderson, R.M. and de Cabo, R., 2020. Untangling determinants of enhanced Health and lifespan through a multi-omics approach in mice. Cell. Metab. 32, 100-116.
    [4]
    Axler, O., Ahnstrom, J. and Dahlback, B., 2007. An ELISA for apolipoprotein M reveals a strong correlation to total cholesterol in human plasma. J. Lipid Res. 48, 1772-1780.
    [5]
    Bisgaard, L.S. and Christoffersen, C., 2019. Apolipoprotein M/sphingosine-1-phosphate: novel effects on lipids, inflammation and kidney biology. Curr. Opin. Lipidol. 30, 212-217.
    [6]
    Cansancao, K., Silva Monteiro, L., Carvalho Leite, N., Davalos, A., Tavares do Carmo, M.D.G. and Arantes Ferreira Peres, W., 2018. Advanced liver fibrosis is independently associated with palmitic acid and insulin levels in patients with non-alcoholic fatty liver disease. Nutrients. 10, 1586-1597.
    [7]
    Chacko, B.K., Kramer, P.A., Ravi, S., Benavides, G.A., Mitchell, T., Dranka, B.P., Ferrick, D., Singal, A.K., Ballinger, S.W., Bailey, S.M., Hardy, R.W., Zhang, J., Zhi, D. and Darley-Usmar, V.M., 2014. The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin. Sci. (Lond) 127, 367-373.
    [8]
    Christensen, P.M., Liu, C.H., Swendeman, S.L., Obinata, H., Qvortrup, K., Nielsen, L.B., Hla, T., Di Lorenzo, A. and Christoffersen, C., 2016. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. FASEB. J. 30, 2351-2359.
    [9]
    Cueto, R., Zhang, L., Shan, H.M., Huang, X., Li, X., Li, Y.F., Lopez, J., Yang, W.Y., Lavallee, M., Yu, C., Ji, Y., Yang, X. and Wang, H., 2018. Identification of homocysteine-suppressive mitochondrial ETC complex genes and tissue expression profile - novel hypothesis establishment. Redox. Biol. 17, 70-88.
    [10]
    Dagda, R.K., Cherra, S.J., 3rd, Kulich, S.M., Tandon, A., Park, D. and Chu, C.T., 2009. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284, 13843-13855.
    [11]
    De Rosa, M.C., Caputo, M., Zirpoli, H., Rescigno, T., Tarallo, R., Giurato, G., Weisz, A., Torino, G. and Tecce, M.F., 2015. Identification of genes selectively regulated in human hepatoma cells by treatment with dyslipidemic sera and PUFAs. J. Cell. Physiol. 230, 2059-2066.
    [12]
    Faber, K., Axler, O., Dahlback, B. and Nielsen, L.B., 2004. Characterization of apoM in normal and genetically modified mice. J. Lipid Res. 45, 1272-1278.
    [13]
    Faber, K., Hvidberg, V., Moestrup, S.K., Dahlback, B. and Nielsen, L.B., 2006. Megalin is a receptor for apolipoprotein M, and kidney-specific megalin-deficiency confers urinary excretion of apolipoprotein M. Mol. Endocrinol. 20, 212-218.
    [14]
    Frej, C., Linder, A., Happonen, K.E., Taylor, F.B., Lupu, F. and Dahlback, B., 2016. Sphingosine 1-phosphate and its carrier apolipoprotein M in human sepsis and in Escherichia coli sepsis in baboons. J. Cell Mol. Med. 20, 1170-1181.
    [15]
    Gomez-Munoz, A., Presa, N., Gomez-Larrauri, A., Rivera, I.G., Trueba, M. and Ordonez, M., 2016. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog. Lipid Res. 61, 51-62.
    [16]
    Grefhorst, A., Elzinga, B.M., Voshol, P.J., Plosch, T., Kok, T., Bloks, V.W., van der Sluijs, F.H., Havekes, L.M., Romijn, J.A., Verkade, H.J. and Kuipers, F., 2002. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J. Biol. Chem. 277, 34182-34190.
    [17]
    Hachem, H., Favre, G., Raynal, G., Blavy, G., Canal, P. and Soula, G., 1986. Serum apolipoproteins A-I, A-II and B in hepatic metastases. Comparison with other liver diseases: hepatomas and cirrhosis. J. Clin. Chem. Clin. Biochem. 24, 161-166.
    [18]
    Han, M.S., Park, S.Y., Shinzawa, K., Kim, S., Chung, K.W., Lee, J.H., Kwon, C.H., Lee, K.W., Lee, J.H., Park, C.K., Chung, W.J., Hwang, J.S., Yan, J.J., Song, D.K., Tsujimoto, Y. and Lee, M.S., 2008. Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J. Lipid Res. 49, 84-97.
    [19]
    Hellmuth, C., Demmelmair, H., Schmitt, I., Peissner, W., Bluher, M. and Koletzko, B., 2013. Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PloS One. 8, e74927-74935.
    [20]
    Higuchi, N., Kato, M., Shundo, Y., Tajiri, H., Tanaka, M., Yamashita, N., Kohjima, M., Kotoh, K., Nakamuta, M., Takayanagi, R. and Enjoji, M., 2008. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res. 38, 1122-1129.
    [21]
    Huang, H., Sun, Z., Pan, H., Chen, M., Tong, Y., Zhang, J., Chen, D., Su, X. and Li, L., 2016. Serum metabolomic signatures discriminate early liver inflammation and fibrosis stages in patients with chronic hepatitis Biol. Sci. Rep. 6, 30853-30861.
    [22]
    Jiang, J., Zhang, X., Wu, C., Qin, X., Luo, G., Deng, H., Lu, M., Xu, B., Li, M., Ji, M. and Xu, N., 2008. Increased plasma apoM levels in the patients suffered from hepatocellular carcinoma and other chronic liver diseases. Lipids Health Dis. 7, 25-29.
    [23]
    Joseph, S.B., Laffitte, B.A., Patel, P.H., Watson, M.A., Matsukuma, K.E., Walczak, R., Collins, J.L., Osborne, T.F. and Tontonoz, P., 2002. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277, 11019-11025.
    [24]
    Kakisaka, K., Cazanave, S.C., Werneburg, N.W., Razumilava, N., Mertens, J.C., Bronk, S.F. and Gores, G.J., 2012. A hedgehog survival pathway in 'undead' lipotoxic hepatocytes. J. Hepatol. 57, 844-851.
    [25]
    Koves, T.R., Ussher, J.R., Noland, R.C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., Stevens, R., Dyck, J.R., Newgard, C.B., Lopaschuk, G.D. and Muoio, D.M., 2008. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell. Metab. 7, 45-56.
    [26]
    Kurano, M., Tsukamoto, K., Ohkawa, R., Hara, M., Iino, J., Kageyama, Y., Ikeda, H. and Yatomi, Y., 2013. Liver involvement in sphingosine 1-phosphate dynamism revealed by adenoviral hepatic overexpression of apolipoprotein M. Atherosclerosis. 229, 102-109.
    [27]
    Kurano, M., Tsuneyama, K., Morimoto, Y., Shimizu, T., Jona, M., Kassai, H., Nakao, K., Aiba, A. and Yatomi, Y., 2018. Apolipoprotein M protects lipopolysaccharide-treated mice from death and organ injury. Thromb. Haemost. 118, 1021-1035.
    [28]
    Lam, S.M. and Shui, G., 2013. Lipidomics as a principal tool for advancing biomedical research. J. Genet. Genomics 40, 375-390.
    [29]
    Lam, S.M., Tian, H. and Shui, G., 2017a. Lipidomics, en route to accurate quantitation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 752-761.
    [30]
    Lam, S.M., Tong, L., Duan, X., Petznick, A., Wenk, M.R. and Shui, G., 2014. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J. Lipid Res. 55, 289-298.
    [31]
    Lam, S.M., Wang, Z., Li, J., Huang, X. and Shui, G., 2017b. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival. Redox. Biol. 12, 967-977.
    [32]
    Lam, S.M., Wang, R., Miao, H., Li, B. and Shui, G., 2018. An integrated method for direct interrogation of sphingolipid homeostasis in the heart and brain tissues of mice through postnatal development up to reproductive senescence. Anal. Chim. Acta 1037, 152-158.
    [33]
    Lopane, C., Agosti, P., Gigante, I., Sabba, C. and Mazzocca, A., 2017. Implications of the lysophosphatidic acid signaling axis in liver cancer. Biochim. Biophys. Acta Rev. Canc 1868, 277-282.
    [34]
    Luo, G., Hurtig, M., Zhang, X., Nilsson-Ehle, P. and Xu, N., 2005. Leptin inhibits apolipoprotein M transcription and secretion in human hepatoma cell line, HepG2 cells. Biochim. Biophys. Acta 1734, 198-202.
    [35]
    Luo, G., Shi, Y., Zhang, J., Mu, Q., Qin, L., Zheng, L., Feng, Y., Berggren-Soderlund, M., Nilsson-Ehle, P., Zhang, X. and Xu, N., 2014. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPARbeta/delta in HepG2 cells. Biochem. Biophys. Res. Commun.. 445, 203-207.
    [36]
    Nielsen, L.B., Christoffersen, C., Ahnstrom, J. and Dahlback, B., 2009. ApoM: gene regulation and effects on HDL metabolism. Trends. Endocrinol. Metab. 20, 66-71.
    [37]
    Overgaard, A.J., Weir, J.M., Jayawardana, K., Mortensen, H.B., Pociot, F. and Meikle, P.J., 2018. Plasma lipid species at type 1 diabetes onset predict residual beta-cell function after 6 months. Metabolomics. 14, 158-166.
    [38]
    Ruiz, M., Frej, C., Holmer, A., Guo, L.J., Tran, S. and Dahlback, B., 2017. High-density lipoprotein-associated apolipoprotein M limits endothelial inflammation by delivering sphingosine-1-phosphate to the sphingosine-1-phosphate receptor 1. Arterioscler. Thromb. Vasc. Biol. 37, 118-129.
    [39]
    Samuel, V.T., Liu, Z.X., Qu, X., Elder, B.D., Bilz, S., Befroy, D., Romanelli, A.J. and Shulman, G.I., 2004. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345-32353.
    [40]
    Samuel, V.T., Liu, Z.X., Wang, A., Beddow, S.A., Geisler, J.G., Kahn, M., Zhang, X.M., Monia, B.P., Bhanot, S. and Shulman, G.I., 2007. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117, 739-745.
    [41]
    Shui, G., Cheong, W.F., Jappar, I.A., Hoi, A., Xue, Y., Fernandis, A.Z., Tan, B.K. and Wenk, M.R., 2011. Derivatization-independent cholesterol analysis in crude lipid extracts by liquid chromatography/mass spectrometry: applications to a rabbit model for atherosclerosis. J. Chromatogr., A 1218, 4357-4365.
    [42]
    Shui, G., Guan, X.L., Low, C.P., Chua, G.H., Goh, J.S., Yang, H. and Wenk, M.R., 2010. Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Mol. Biosyst. 6, 1008-1017.
    [43]
    Shui, G.H., Lam, S.M., Stebbins, J., Kusunoki, J., Duan, X.R., Li, B.W., Cheong, W.F., Soon, D., Kelly, R.P. and Wenk, M.R., 2013. Polar lipid derangements in type 2 diabetes mellitus: potential pathological relevance of fatty acyl heterogeneity in sphingolipids. Metabolomics. 9, 786-799.
    [44]
    Song, J.W., Lam, S.M., Fan, X., Cao, W.J., Wang, S.Y., Tian, H., Chua, G.H., Zhang, C., Meng, F.P., Xu, Z., Fu, J.L., Huang, L., Xia, P., Yang, T., Zhang, S., Li, B., Jiang, T.J., Wang, R., Wang, Z., Shi, M., Zhang, J.Y., Wang, F.S. and Shui, G., 2020. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell. Metab. 32, 188-202.
    [45]
    Thiam, A.R., Farese, R.V., Jr and Walther, T.C., 2013. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775-786.
    [46]
    Tu, J., Yin, Y.D., Xu, M.M., Wang, R.H. and Zhu, Z.J., 2018. Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain. Metabolomics. 14, 1304-1307.
    [47]
    Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit, M.M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A.R., Healy, D.G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W.P., Latchman, D.S., Harvey, R.J., Dallapiccola, B., Auburger, G. and Wood, N.W., 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 304, 1158-1160.
    [48]
    Wang, Z., Luo, G., Feng, Y., Zheng, L., Liu, H., Liang, Y., Liu, Z., Shao, P., Berggren-Soderlund, M., Zhang, X. and Xu, N., 2015. Decreased splenic CD4(+) T-lymphocytes in apolipoprotein M gene deficient mice. Biomed. Res. Int. 2015, 293512-293519.
    [49]
    Wang, G.W., Zhang, X.L., Wu, Q.H., Jin, Y.B., Ning, C.T., Wang, R., Mao, J.X. and Chen, M., 2018. The hepatoprotective effects of Sedum sarmentosum extract and its isolated major constituent through Nrf2 activation and NF-kappaB inhibition. Phytomedicine. 53, 263-273.
    [50]
    Wang, R., Li, B., Lam, S.M. and Shui, G., 2020. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J. Genet. Genomics (accepted).
    [51]
    Wolfrum, C., Poy, M.N. and Stoffel, M., 2005. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med. 11, 418-422.
    [52]
    Xu, N. and Dahlback, B., 1999. A novel human apolipoprotein (apoM). J. Biol. Chem. 274, 31286-31290.
    [53]
    Xu, N., Nilsson-Ehle, P. and Ahren, B., 2004a. Correlation of apolipoprotein M with leptin and cholesterol in normal and obese subjects. J. Nutr. Biochem. 15, 579-582.
    [54]
    Xu, N., Nilsson-Ehle, P., Hurtig, M. and Ahren, B., 2004b. Both leptin and leptin-receptor are essential for apolipoprotein M expression in vivo. Biochem. Biophys. Res. Commun. 321, 916-921.
    [55]
    Yu, M., Pan, L., Sang, C., Mu, Q., Zheng, L., Luo, G. and Xu, N., 2019. Apolipoprotein M could inhibit growth and metastasis of SMMC7721 cells via vitamin D receptor signaling. Cancer. Manag. Res. 11, 3691-3701.
    [56]
    Zhang, X., Zhang, P., Gao, J. and Huang, Q., 2018. Autophagy dysregulation caused by ApoM deficiency plays an important role in liver lipid metabolic disorder. Biochem. Biophys. Res. Commun. 495, 2643-2648.
    [57]
    Zheng, L., Feng, Y., Shi, Y., Zhang, J., Mu, Q., Qin, L., Berggren-Soderlund, M., Nilsson-Ehle, P., Zhang, X., Luo, G. and Xu, N., 2014. Intralipid decreases apolipoprotein M levels and insulin sensitivity in rats. PloS One. 9, e105681-105688.
    [58]
    Zhu, B., Luo, G.H., Feng, Y.H., Yu, M.M., Zhang, J., Wei, J., Yang, C., Xu, N. and Zhang, X.Y., 2018. Apolipoprotein M protects against lipopolysaccharide-induced acute lung injury via sphingosine-1-phosphate signaling. Inflammation. 41, 643-653.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (7)

    Article Metrics

    Article views (60) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return