[1] |
Bae, S., Park, J., Kim, J.S., 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475.
|
[2] |
Chen, F., Ding, X., Feng, Y., Seebeck, T., Jiang, Y., Davis, G.D., 2017. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nat. Commun. 8, 14958.
|
[3] |
Doman, J.L., Raguram, A., Newby, G.A., Liu, D.R., 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620-628.
|
[4] |
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A∗T to G∗C in genomic DNA without DNA cleavage. Nature 551, 464-471.
|
[5] |
Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L., Joung, J.K., 2018. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36, 977-982.
|
[6] |
Hess, G.T., Tycko, J., Yao, D., Bassik, M.C., 2017. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol. Cell 68, 26-43.
|
[7] |
Horlbeck, M.A., Witkowsky, L.B., Guglielmi, B., Replogle, J.M., Gilbert, L.A., Villalta, J.E., Torigoe, S.E., Tjian, R., Weissman J.S., 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife 5, e12677.
|
[8] |
Kluesner, M.G., Nedveck, D.A., Lahr, W.S., Garbe, J.R., Abrahante, J.E., Webber, B.R., Moriarity, B.S., 2018. EditR: a method to quantify base editing from sanger sequencing. Crispr J. 1, 239-250.
|
[9] |
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
|
[10] |
Kunz, C., Saito, Y., Schar, P., 2009. DNA Repair in mammalian cells: mismatched repair: variations on a theme. Cell Mol. Life Sci. 66, 1021-1038.
|
[11] |
Li, X., Wang, Y., Liu, Y., Yang, B., Wang, X. Wei, J., Lu, Z., Zhang, Y., Wu, J., Huang, X., Yang, L., Chen, J. 2018. Base editing with a Cpf1-cytidine deaminase fusion. Nat. Biotechnol. 36, 324-327.
|
[12] |
Liu, G., Yin, K., Zhang, Q., Gao, C., Qiu, J.L., 2019a. Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo. Genome Biol. 20, 145.
|
[13] |
Liu, Z., Chen, S., Shan, H., Zhang, Q., Chen, M., Lai, L., Li, Z., 2019b. Efficient and precise base editing in rabbits using human APOBEC3A-nCas9 fusions. Cell Discov. 5, 31.
|
[14] |
Pearl, L.H., 2000. Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165-181.
|
[15] |
Rees, H.A., Liu, D.R., 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770-788.
|
[16] |
Tsompana, M., Buck, M.J., 2014. Chromatin accessibility: a window into the genome. Epigenet. Chromatin 7, 33.
|
[17] |
Wang, X., Li, J., Wang, Y., Yang, B., Wei, J., Wu, J., Wang, R., Huang, X., Chen, J., Yang, L., 2018. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946-949.
|
[18] |
Yarrington, R.M., Verma, S., Schwartz, S., Trautman, J.K., Carroll, D., 2018. Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proc. Natl. Acad. Sci. U. S. A. 115, 9351-9358.
|
[19] |
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V., Zhang, F., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
|