5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 11
Nov.  2020
Turn off MathJax
Article Contents

A tunable, rapid, and precise drug control of protein expression by combining transcriptional and post-translational regulation systems

doi: 10.1016/j.jgg.2020.07.009
More Information
  • Rapid, precise, and tunable regulation of protein abundance would be significantly useful in a variety of biotechnologies and biomedical applications. Here, we describe a system that allows tunable and rapid drug control of gene expression for either gene activation or inactivation in mammalian cells. We construct the system by coupling Tet-on 3G and small molecule-assisted shutoff systems, which can respectively induce transcriptional activation and protein degradation in the presence of corresponding small molecules. This dual-input drug inducer regulation system facilitates a bidirectional control of gene expression. The gene of interest can be precisely controlled by dual small molecules in a broad dynamic range of expression from overexpression to complete silence, allowing gene function study in a comprehensive expression profile. Our results reveal that the bidirectional control system enables sensitive dosage- and time-dependent regulation for either turn-on or shutoff of gene expression. We also apply this system for inducible genome editing and gene activation mediated by clustered regularly interspaced short palindromic repeats. The system provides an integrated platform for studying multiple biological processes by manipulating gene expression in a more flexible way.
  • loading
  • [1]
    Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G.L., Wandless, T.J., 2006. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995-1004.
    [2]
    Chen, R.P., Gaynor, A.S., Chen, W., 2019. Synthetic biology approaches for targeted protein degradation. Biotechnol. Adv. 37, 107446.
    [3]
    Chung, H.K., Jacobs, C.L., Huo, Y., Yang, J., Krumm, S.A., Plemper, R.K., Tsien, R.Y., Lin, M.Z., 2015. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11, 713-720.
    [4]
    Dalgaard, K., Landgraf, K., Heyne, S., Lempradl, A., Longinotto, J., Gossens, K., Ruf, M., Orthofer, M., Strogantsev, R., Selvaraj, M., Lu, T.T.H., Casas, E., Teperino, R., Surani, M.A., Zvetkova, I., Rimmington, D., Tung, Y.C.L., Lam, B., Larder, R., Yeo, G.S.H., O'Rahilly, S., Vavouri, T., Whitelaw, E., Penninger, J.M., Jenuwein, T., Cheung, C.L., Ferguson-Smith, A.C., Coll, A.P., Korner, A., Pospisilik, J.A., 2016. Trim28 haploinsufficiency triggers bi-stable epigenetic obesity. Cell 164, 353-364.
    [5]
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
    [6]
    Gennarino, V.A., Singh, R.K., White, J.J., De Maio, A., Han, K., Kim, J.Y., Jafar-Nejad, P., di Ronza, A., Kang, H., Sayegh, L.S., Cooper, T.A., Orr, H.T., Sillitoe, R.V., Zoghbi, H.Y., 2015. Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type ataxin1 levels. Cell 160, 1087-1098.
    [7]
    Gossen, M., Bujard, H., 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U. S. A 89, 5547-5551.
    [8]
    Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., Bujard, H., 1995. Transcriptional activation by tetracyclines in mammalian-cells. Science 268, 1766-1769.
    [9]
    Lin, M.Z., Glenn, J.S., Tsien, R.Y., 2008. A drug-controllable tag for visualizing newly synthesized proteins in cells and whole animals. Proc. Natl. Acad. Sci. U. S. A 105, 7744-7749.
    [10]
    Loew, R., Heinz, N., Hampf, M., Bujard, H., Gossen, M., 2010. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol.. 10, 81.
    [11]
    McPhee, F., Sheaffer, A.K., Friborg, J., Hernandez, D., Falk, P., Zhai, G., Levine, S., Chaniewski, S., Yu, F., Barry, D., Chen, C., Lee, M.S., Mosure, K., Sun, L.Q., Sinz, M., Meanwell, N.A., Colonno, R.J., Knipe, J., Scola, P., 2012. Preclinical profile and characterization of the hepatitis C virus NS3 protease inhibitor asunaprevir (BMS-650032). Antimicrob. Agents Chemother. 56, 5387-5396.
    [12]
    Mello, C.C., Conte, D., 2004. Revealing the world of RNA interference. Nature 431, 338-342.
    [13]
    Niwa, H., Toyooka, T., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R., Rossant, J., 2005. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917-929.
    [14]
    Qian, K., Huang, C.T., Chen, H., Blackbourn, L.W.t., Chen, Y., Cao, J., Yao, L., Sauvey, C., Du, Z., Zhang, S.C., 2014. A simple and efficient system for regulating gene expression in human pluripotent stem cells and derivatives. Stem Cell. 32, 1230-1238.
    [15]
    Randolph, L.N., Bao, X., Zhou, C., Lian, X., 2017. An all-in-one, Tet-On 3G inducible PiggyBac system for human pluripotent stem cells and derivatives. Sci. Rep. 7, 1549.
    [16]
    Sakemura, R., Terakura, S., Watanabe, K., Julamanee, J., Takagi, E., Miyao, K., Koyama, D., Goto, T., Hanajiri, R., Nishida, T., Murata, M., Kiyoi, H., 2016. A Tet-On inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol. Res. 4, 658-668.
    [17]
    Senturk, S., Shirole, N.H., Nowak, D.G., Corbo, V., Pal, D., Vaughan, A., Tuveson, D.A., Trotman, L.C., Kinney, J.B., Sordella, R., 2017. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat. Commun. 8, 14370.
    [18]
    Wei, S., Zou, Q.J., Lai, S.S., Zhang, Q.J., Li, L., Yan, Q.M., Zhou, X.Q., Zhong, H.L., Lai, L.X., 2016. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. 6, 19648.
    [19]
    Wu, Y., Yang, L., Chang, T., Kandeel, F., Yee, J.K., 2020. A small molecule-controlled Cas9 repressible system. Mol. Ther. Nucleic Acids 19, 922-932.
    [20]
    Zhou, X., Vink, M., Klaver, B., Berkhout, B., Das, A.T., 2006. Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther.. 13, 1382-1390.
    [21]
    Zhu, W., Zhang, B., Li, M., Mo, F., Mi, T., Wu, Y., Teng, Z., Zhou, Q., Li, W., Hu, B., 2019. Precisely controlling endogenous protein dosage in hPSCs and derivatives to model FOXG1 syndrome. Nat. Commun. 10, 928.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (4)

    Article Metrics

    Article views (68) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return