5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 10
Oct.  2020
Turn off MathJax
Article Contents

Phosphatidylinositol 4-kinase β is required for the ciliogenesis of zebrafish otic vesicle

doi: 10.1016/j.jgg.2020.07.007
More Information
  • The primary cilium, an important microtubule-based organelle, protrudes from nearly all the vertebrate cells. The motility of cilia is necessary for various developmental and physiological processes. Phosphoinositides (PIs) and its metabolite, PtdIns(4,5)P2, have been revealed to contribute to cilia assembly and disassembly. As an important kinase of the PI pathway and signaling, phosphatidylinositol 4-kinase β (PI4KB) is the one of the most extensively studied phosphatidylinositol 4-kinase isoform. However, its potential roles in organ development remain to be characterized. To investigate the developmental role of Pi4kb, especially its function on zebrafish ciliogenesis, we generated pi4kb deletion mutants using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 technique. The homozygous pi4kb mutants exhibit an absence of primary cilia in the inner ear, neuromasts, and pronephric ducts accompanied by severe edema in the eyes and other organs. Moreover, smaller otic vesicle, malformed semicircular canals, and the insensitivity on sound stimulation were characteristics of pi4kb mutants. At the protein level, both in vivo and in vitro analyses revealed that synthesis of Pi4p was greatly reduced owing to the loss of Pi4kb. In addition, the expression of the Pi4kb-binding partner of neuronal calcium sensor-1, as well as the phosphorylation of phosphatidylinositol-4-phosphate downstream effecter of Akt, was significantly inhibited in pi4kb mutants. Taken together, our work uncovers a novel role of Pi4kb in zebrafish inner ear development and the functional formation of hearing ability by determining hair cell ciliogenesis.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Aukema, H.M., Chapkin, R.S., Tomobe, K., Takahashi, H., Holub, B.J., 1992. In vivo formation of polyphosphoinositide isomers and association with progression of murine polycystic kidney disease. Exp. Mol. Pathol. 57, 39-46.
    [2]
    Bielas, S.L., Silhavy, J.L., Brancati, F., Kisseleva, M.V., Al-Gazali, L., Sztriha, L., Bayoumi, R.A., Zaki, M.S., Abdel-Aleem, A., Rosti, R.O., Kayserili, H., Swistun, D., Scott, L.C., Bertini, E., Boltshauser, E., Fazzi, E., Travaglini, L., Field, S.J., Gayral, S., Jacoby, M., Schurmans, S., Dallapiccola, B., Majerus, P.W., Valente, E.M., Gleeson, J.G., 2009. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41, 1032-1036.
    [3]
    Bisgrove, B.W., Yost, H.J., 2006. The roles of cilia in developmental disorders and disease. Development 133, 4131-4143.
    [4]
    Blagoveshchenskaya, A., Cheong, F.Y., Rohde, H.M., Glover, G., Knodler, A., Nicolson, T., Boehmelt, G., Mayinger, P., 2008. Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J. Cell Biol. 180, 803-812.
    [5]
    Cai, C., Lin, J., Sun, S., He, Y., 2016. JNK inhibition inhibits lateral line neuromast hair cell development. Front. Cell. Neurosci. 10, 19.
    [6]
    Chalupska, D., Eisenreichova, A., Rozycki, B., Rezabkova, L., Humpolickova, J., Klima, M., Boura, E., 2017. Structural analysis of phosphatidylinositol 4-kinase IIIbeta (PI4KB)-14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. J. Struct. Biol. 200, 36-44.
    [7]
    Chang-Chien, J., Yen, Y.C., Chien, K.H., Li, S.Y., Hsu, T.C., Yang, J.J., 2014. The connexin 30.3 of zebrafish homologue of human connexin 26 may play similar role in the inner ear. Hear. Res.. 313, 55-66.
    [8]
    Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., Xi, J.J., 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res.. 23, 465-472.
    [9]
    Xiuli Cheng, X.T., Weixia Liu, Hui Li, Li Yan, Yan Yang, Xiaorong Zeng, Jimin Cao, 2016. PI4Kβ, PIPs and BKCa channel function. Sci. Bull. 61(23), 1779-1782.
    [10]
    Drummond, I., 2009. Studying cilia in zebrafish. MethodCell Biol. 93, 197-217.
    [11]
    Figueroa, V., Saez, P.J., Salas, J.D., Salas, D., Jara, O., Martinez, A.D., Saez, J.C., Retamal, M.A., 2013. Linoleic acid induces opening of connexin26 hemichannels through a PI3K/Akt/Ca(2+)-dependent pathway. Biochim. Biophys. Acta 1828, 1169-1179.
    [12]
    Friedman, L.M., Dror, A.A., Mor, E., Tenne, T., Toren, G., Satoh, T., Biesemeier, D.J., Shomron, N., Fekete, D.M., Hornstein, E., Avraham, K.B., 2009. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. PNAS. 106, 7915-7920.
    [13]
    Han, Y., Mu, Y., Li, X., Xu, P., Tong, J., Liu, Z., Ma, T., Zeng, G., Yang, S., Du, J., Meng, A., 2011. Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Hum. Mol. Genet. 20, 3213-3226.
    [14]
    He, Y., Bao, B., Li, H., 2017. Using zebrafish as a model to study the role of epigenetics in hearing loss. Expet Opin. Drug Discov. 12, 967-975.
    [15]
    Hess, A., Labbe, D., Watanabe, K., Bloch, W., Michel, O., 2006. Evidence for an Akt-kinase/NO/cGMP pathway in the cochlea of Guinea pigs. Eur. Arch. Oto-Rhino-Laryngol. 263, 75-78.
    [16]
    Jiang, L., Romero-Carvajal, A., Haug, J.S., Seidel, C.W., Piotrowski, T., 2014. Gene-expression analysis of hair cell regeneration in the zebrafish lateral line.PNAS. 111, E1383-E1392.
    [17]
    Kozlowski, D.J., Whitfield, T.T., Hukriede, N.A., Lam, W.K., Weinberg, E.S., 2005. The zebrafish dog-eared mutation disrupts eya1, a gene required for cell survival and differentiation in the inner ear and lateral line. Dev. Biol. 277, 27-41.
    [18]
    Kurioka, T., Matsunobu, T., Niwa, K., Tamura, A., Satoh, Y., Shiotani, A., 2014. Activated protein C rescues the cochlea from noise-induced hearing loss. Brain Res.. 1583, 201-210.
    [19]
    Li, X., Song, G., Zhao, Y., Zhao, F., Liu, C., Liu, D., Li, Q., Cui, Z., 2018. Claudin7b is required for the formation and function of inner ear in zebrafish. J. Cell. Physiol. 233, 3195-3206.
    [20]
    Lush, M.E., Piotrowski, T., 2014. Sensory hair cell regeneration in the zebrafish lateral line. Dev. Dyn. 243, 1187-1202.
    [21]
    Mesmin, B., Bigay, J., Polidori, J., Jamecna, D., Lacas-Gervais, S., Antonny, B., 2017. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J..36, 3156-3174.
    [22]
    Ou, H., Simon, J.A., Rubel, E.W., Raible, D.W., 2012. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hear. Res. 288, 58-66.
    [23]
    Petko, J.A., Kabbani, N., Frey, C., Woll, M., Hickey, K., Craig, M., Canfield, V.A., Levenson, R., 2009. Proteomic and functional analysis of NCS-1 binding proteins reveals novel signaling pathways required for inner ear development in zebrafish. BMC Neurosci.. 10, 27.
    [24]
    Rajamanoharan, D., McCue, H.V., Burgoyne, R.D., Haynes, L.P., 2015. Modulation of phosphatidylinositol 4-phosphate levels by CaBP7 controls cytokinesis in mammalian cells. Mol. Biol. Cell 26, 1428-1439.
    [25]
    Sedykh, I., TeSlaa, J.J., Tatarsky, R.L., Keller, A.N., Toops, K.A., Lakkaraju, A., Nyholm, M.K., Wolman, M.A., Grinblat, Y., 2016. Novel roles for the radial spoke head protein 9 in neural and neurosensory cilia. Sci. Rep. 6, 34437.
    [26]
    Song, Z., Zhang, X., Jia, S., Yelick, P.C., Zhao, C., 2016. Zebrafish as a model for human ciliopathies. J. Genet. Genomics 43, 107-120.
    [27]
    Su, X., Feng, Y., Rahman, S.A., Wu, S., Li, G., Ruschendorf, F., Zhao, L., Cui, H., Liang, J., Fang, L., Hu, H., Froehler, S., Yu, Y., Patone, G., Hummel, O., Chen , Q., Raile, K., Luft, F.C., Bahring, S., Hussain, K., Chen, W., Zhang, J., Gong, M., 2020. Phosphatidylinositol 4 kinase-β mutations cause non-syndromic sensorineural deafness and inner ear malformation. J. Genet. Genomics. DOI: 10.1016/j.jgg.2020.07.008.
    [28]
    Sun, C., Zhao, J., Jin, Y., Hou, C., Zong, W., Lu, T., Li, H., Gao, J., 2014. PTEN regulation of the proliferation and differentiation of auditory progenitors through the PTEN/PI3K/Akt-signaling pathway in mice. Neuroreport 25, 177-183.
    [29]
    Thisse, C., Thisse, B., 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69.
    [30]
    Tobin, J.L., Beales, P.L., 2008. Restoration of renal function in zebrafish models of ciliopathies. Pediatr. Nephrol. 23, 2095-2099.
    [31]
    Waugh, M.G., 2014. Amplification of chromosome 1q genes encoding the phosphoinositide signalling enzymes PI4KB, AKT3, PIP5K1A and PI3KC2B in breast cancer. J. Cancer 5, 790-796.
    [32]
    Wei, H.C., Rollins, J., Fabian, L., Hayes, M., Polevoy, G., Bazinet, C., Brill, J.A., 2008. Depletion of plasma membrane PtdIns(4,5)P2 reveals essential roles for phosphoinositides in flagellar biogenesis. J. Cell Sci. 121, 1076-1084.
    [33]
    Westerfield, M., 2000. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon Press, Eugene, OR.
    [34]
    Whitfield, T.T., Riley, B.B., Chiang, M.Y., Phillips, B., 2002. Development of the zebrafish inner ear. Dev. Dyn. 223, 427-458.
    [35]
    Xu, W., Jin, M., Huang, W., Wang, H., Hu, R., Li, J., Cao, Y., 2019. Apical PtdIns(4,5)P2 is required for ciliogenesis and suppression of polycystic kidney disease. Faseb. J.. 33, 2848-2857.
    [36]
    Zhu, Y., Chen, J., Liang, C., Zong, L., Chen, J., Jones, R.O., Zhao, H.B., 2015. Connexin26 (GJB2) deficiency reduces active cochlear amplification leading to late-onset hearing loss. Neuroscience 284, 719-729.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (5)

    Article Metrics

    Article views (113) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return