5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 6
Jun.  2020
Turn off MathJax
Article Contents

DVL mutations identified from human neural tube defects and Dandy-Walker malformation obstruct the Wnt signaling pathway

doi: 10.1016/j.jgg.2020.06.003
More Information
  • Wnt signaling pathways, including the canonical Wnt/β-catenin pathway, planar cell polarity pathway, and Wnt/Ca2+ signaling pathway, play important roles in neural development during embryonic stages. The DVL genes encode the hub proteins for Wnt signaling pathways. The mutations in DVL2 and DVL3 were identified from patients with neural tube defects (NTDs), but their functions in the pathogenesis of human neural diseases remain elusive. Here, we sequenced the coding regions of three DVL genes in 176 stillborn or miscarried fetuses with NTDs or Dandy-Walker malformation (DWM) and 480 adult controls from a Han Chinese population. Four rare mutations were identified: DVL1 p.R558H, DVL1 p.R606C, DVL2 p.R633W, and DVL3 p.R222Q. To assess the effect of these mutations on NTDs and DWM, various functional analyses such as luciferase reporter assay, stress fiber formation, and in vivo teratogenic assay were performed. The results showed that the DVL2 p.R633W mutation destabilized DVL2 protein and upregulated activities for all three Wnt signalings (Wnt/β-catenin signaling, Wnt/planar cell polarity signaling, and Wnt/Ca2+ signaling) in mammalian cells. In contrast, DVL1 mutants (DVL1 p.R558H and DVL1 p.R606C) decreased canonical Wnt/β-catenin signaling but increased the activity of Wnt/Ca2+ signaling, and DVL3 p.R222Q only decreased the activity of Wnt/Ca2+ signaling. We also found that only the DVL2 p.R633W mutant displayed more severe teratogenicity in zebrafish embryos than wild-type DVL2. Our study demonstrates that these four rare DVL mutations, especially DVL2 p.R633W, may contribute to human neural diseases such as NTDs and DWM by obstructing Wnt signaling pathways.
  • loading
  • [1]
    Allache, R., De Marco, P., Merello, E., Capra, V., Kibar, Z., 2012. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol 94, 176-181.
    [2]
    Bikkavilli, R.K., Avasarala, S., Vanscoyk, M., Sechler, M., Kelley, N., Malbon, C.C., Winn, R.A., 2012. Dishevelled3 is a novel arginine methyl transferase substrate. Sci Rep 2, 805.
    [3]
    Bosoi, C.M., Capra, V., Allache, R., Trinh, V.Q., De Marco, P., Merello, E., Drapeau, P., Bassuk, A.G., Kibar, Z., 2011. Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat 32, 1371-1375.
    [4]
    Capelluto, D.G.S., Kutateladze, T.G., Habas, R., Finkielstein, C.V., He, X., Overduin, M., 2002. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 419, 726-729.
    [5]
    Chen, S., Zhang, Q., Bai, B., Ouyang, S., Bao, Y., Li, H., Zhang, T., 2017. MARK2/Par1b Insufficiency Attenuates DVL Gene Transcription via Histone Deacetylation in Lumbosacral Spina Bifida. Mol Neurobiol 54, 6304-6316.
    [6]
    Cheng, M.Z., Xue, H., Cao, W.P., Li, W.X., Chen, H., Liu, B.F., Ma, B.Y., Yan, X.H., Chen, Y.G., 2016. Receptor for Activated C Kinase 1 (RACK1) Promotes Dishevelled Protein Degradation via Autophagy and Antagonizes Wnt Signaling. J Biol Chem 291, 12871-12879.
    [7]
    Cheyette, B.N., Waxman, J.S., Miller, J.R., Takemaru, K.I., Sheldahl, L.C., Khlebtsova, N., Fox, E.P., Earnest, T., Moon, R.T., 2002. Dapper, a Dishevelled-associated antagonist of β-catenin and JNK signaling, is required for notochord formation. Developmental cell 2(4), 449-461.
    [8]
    Christodoulou, N., Skourides, P.A., 2015. Cell-Autonomous Ca(2+) Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure. Cell Rep 13, 2189-2202.
    [9]
    Ciani, L., Salinas, P.C., 2005. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6, 351-362.
    [10]
    Copp, A.J., Greene, N.D., 2013. Neural tube defects--disorders of neurulation and related embryonic processes. Wiley Interdiscip Rev Dev Biol 2, 213-227.
    [11]
    Copp, A.J., Stanier, P., Greene, N.D.E., 2013. Neural tube defects: recent advances, unsolved questions, and controversies. The Lancet Neurology 12, 799-810.
    [12]
    De Marco, P., Merello, E., Consales, A., Piatelli, G., Cama, A., Kibar, Z., Capra, V., 2013. Genetic Analysis of Disheveled 2 and Disheveled 3 in Human Neural Tube Defects. Journal of Molecular Neuroscience 49, 582-588.
    [13]
    De Marco, P., Merello, E., Rossi, A., Piatelli, G., Cama, A., Kibar, Z., Capra, V., 2012. FZD6 is a novel gene for human neural tube defects. Hum Mutat 33, 384-390.
    [14]
    Diez-Roux, G., Banfi, S., Sultan, M., Geffers, L., Anand, S., Rozado, D., Magen, A., Canidio, E., Pagani, M., Peluso, I., Lin-Marq, N., Koch, M., Bilio, M., Cantiello, I., Verde, R., De Masi, C., Bianchi, S.A., Cicchini, J., Perroud, E., Mehmeti, S., Dagand, E., Schrinner, S., Nurnberger, A., Schmidt, K., Metz, K., Zwingmann, C., Brieske, N., Springer, C., Hernandez, A.M., Herzog, S., Grabbe, F., Sieverding, C., Fischer, B., Schrader, K., Brockmeyer, M., Dettmer, S., Helbig, C., Alunni, V., Battaini, M.A., Mura, C., Henrichsen, C.N., Garcia-Lopez, R., Echevarria, D., Puelles, E., Garcia-Calero, E., Kruse, S., Uhr, M., Kauck, C., Feng, G.J., Milyaev, N., Ong, C.K., Kumar, L., Lam, M., Semple, C.A., Gyenesei, A., Mundlos, S., Radelof, U., Lehrach, H., Sarmientos, P., Reymond, A., Davidson, D.R., Dolle, P., Antonarakis, S.E., Yaspo, M.L., Martinez, S., Baldock, R.A., Eichele, G., Ballabio, A., 2011. A High-Resolution Anatomical Atlas of the Transcriptome in the Mouse Embryo. Plos Biol 9.
    [15]
    Etheridge, S.L., Ray, S., Li, S., Hamblet, N.S., Lijam, N., Tsang, M., Greer, J., Kardos, N., Wang, J., Sussman, D.J., Chen, P., Wynshaw-Boris, A., 2008. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 4, e1000259.
    [16]
    Gao, C., Chen, Y.G., 2010. Dishevelled: The hub of Wnt signaling. Cell Signal 22, 717-727.
    [17]
    Gentzel, M., Schambony, A., 2017. Dishevelled Paralogs in Vertebrate Development: Redundant or Distinct? Front Cell Dev Biol 5, 59.
    [18]
    Gong, B., Shen, W., Xiao, W., Meng, Y., Meng, A., Jia, S., 2017. The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling. Elife 6.
    [19]
    Greene, N.D., Stanier, P., Copp, A.J., 2009. Genetics of human neural tube defects. Hum Mol Genet 18, R113-129.
    [20]
    Habas, R., Dawid, I.B., 2005. Dishevelled and Wnt signaling: is the nucleus the final frontier? Journal of Biology 4.
    [21]
    Hamblet, N.S., 2002. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129, 5827-5838.
    [22]
    Harris, M.J., Juriloff, D.M., 2010. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 88, 653-669.
    [23]
    Kim, S., Nie, H., Nesin, V., Tran, U., Outeda, P., Bai, C.X., Keeling, J., Maskey, D., Watnick, T., Wessely, O., Tsiokas, L., 2016. The polycystin complex mediates Wnt/Ca(2+) signalling. Nat Cell Biol 18, 752-764.
    [24]
    Klingensmith, J., Yang, Y., Axelrod, J.D., Beier, D.R., Perrimon, N., Sussman, D.J., 1996. Conservation of dishevelled structure and function between flies and mice: isolation and characterization of Dvl2. Mechanisms of development 58(1-2), 15-26.
    [25]
    Leduc, R.Y., Singh, P., McDermid, H.E., 2017. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects. Birth Defects Research Part A: Clinical and Molecular Teratology 109, 140-152.
    [26]
    Lei, Y.-P., Zhang, T., Li, H., Wu, B.-L., Jin, L., H-Y, W., 2010. VANGL2 Mutations in Human Cranial Neural-Tube Defects. New England Journal of Medicine 362, 2232-2235.
    [27]
    Li, J., Du, X., Shi, H., Deng, K., Chi, H., Tao, W., 2015. Mammalian Sterile 20-like Kinase 1 (Mst1) Enhances the Stability of Forkhead Box P3 (Foxp3) and the Function of Regulatory T Cells by Modulating Foxp3 Acetylation. J Biol Chem 290, 30762-30770.
    [28]
    Li, Z., Ren, A., Zhang, L., Ye, R., Li, S., Zheng, J., Hong, S., Wang, T., Li, Z., 2006. Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China. Birth Defects Res A Clin Mol Teratol 76, 237-240.
    [29]
    Lijam, N., Paylor, R., McDonald, M.P., Crawley, J.N., Deng, C.X., Herrup, K., Stevens, K.E., G., M., McBain, C.J., Sussman, D.J., Wynshaw-Boris, A., 1997. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell 90(5), 895-905.
    [30]
    Ma, B., Liu, B., Cao, W., Gao, C., Qi, Z., Ning, Y., Chen, Y.G., 2015. The Wnt Signaling Antagonist Dapper1 Accelerates Dishevelled2 Degradation via Promoting Its Ubiquitination and Aggregate-induced Autophagy. J Biol Chem 290, 12346-12354.
    [31]
    Millen, K.J., Gleeson, J.G., 2008. Cerebellar development and disease. Curr Opin Neurobiol 18, 12-19.
    [32]
    Miller, R.K., McCrea, P.D., 2010. Wnt to build a tube: contributions of Wnt signaling to epithelial tubulogenesis. Dev Dyn 239, 77-93.
    [33]
    Parisi, M.A., Dobyns, W.B., 2003. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80, 36-53.
    [34]
    Robinson, A., Escuin, S., Doudney, K., Vekemans, M., Stevenson, R.E., Greene, N.D.E., Copp, A.J., Stanier, P., 2012. Mutations in the planar cell polarity genesCELSR1andSCRIBare associated with the severe neural tube defect craniorachischisis. Human Mutation 33, 440-447.
    [35]
    Roszko, I., Sawada, A., Solnica-Krezel, L., 2009. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20, 986-997.
    [36]
    Rothbacher, U., Laurent, M.N., Deardorff, M.A., Klein, P.S., Cho, K.W., Fraser, S.E., 2000. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. The EMBO journal 19, 1010-1022.
    [37]
    Schlessinger, K., Hall, A., Tolwinski, N., 2009. Wnt signaling pathways meet Rho GTPases. Gene Dev 23, 265-277.
    [38]
    Seo, J.H., Zilber, Y., Babayeva, S., Liu, J., Kyriakopoulos, P., De Marco, P., Merello, E., Capra, V., Gros, P., Torban, E., 2011. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 20, 4324-4333.
    [39]
    Shi, Y., Ding, Y., Lei, Y.P., Yang, X.Y., Xie, G.M., Wen, J., Cai, C.Q., Li, H., Chen, Y., Zhang, T., Wu, B.L., Jin, L., Chen, Y.G., Wang, H.Y., 2012. Identification of novel rare mutations of DACT1 in human neural tube defects. Hum Mutat 33, 1450-1455.
    [40]
    Sussman, D.J., Klingensmith, J., Salinas, P., Adams, P.S., Nusse, R., Perrimon, N., 1994. Isolation and Characterization of a Mouse Homolog of the Drosophila Segment Polarity Gene Dishevelled. Dev Biol 166, 73-86.
    [41]
    Torban, E., Wang, H.J., Groulx, N., Gros, P., 2004. Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J Biol Chem 279, 52703-52713.
    [42]
    Wang, J., Hamblet, N.S., Mark, S., Dickinson, M.E., Brinkman, B.C., Segil, N., Fraser, S.E., Chen, P., Wallingford, J.B., Wynshaw-Boris, A., 2006. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 133, 1767-1778.
    [43]
    Wechezak, A.R., Coan, D.E., 2005. Dvl2 silencing in postdevelopmental cells results in aberrant cell membrane activity and actin disorganization. J Cell Physiol 202, 867-873.
    [44]
    Ybot-Gonzalez, P., Savery, D., Gerrelli, D., Signore, M., Mitchell, C.E., Faux, C.H., Greene, N.D., Copp, A.J., 2007. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134, 789-799.
    [45]
    Zhang, L., Gao, X., Wen, J., Ning, Y., Chen, Y.G., 2006. Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 281, 8607-8612.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (5)  / Tables (2)

    Article Metrics

    Article views (99) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return