[1] |
Adugna, A., Nanda, G.S., Singh, K., Bains, N.S., 2004. A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.). Euphytica 135, 297-304.
|
[2] |
Arndell, T., Sharma, N., Langridge, P., Baumann, U., Watson-Haigh, N.S., Whitford, R., 2019. gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol. 19, 71-82.
|
[3] |
Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., Song, H., Gao, C., Voytas, D.F., Kagale, S., 2018. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci. Rep. 8, 6502-6511.
|
[4] |
Burton, R.A., Shirley, N.J., King, B.J., Harvey, A.J., Fincher, G.B., 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol. 134, 224-236.
|
[5] |
Chang, Z., Chen, Z., Wang, N., Xie, G., Lu, J., Yan, W., Zhou, J., Tang, X., Deng, X.W., 2016. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc. Natl. Acad. Sci. U S A. 113, 14145-14150.
|
[6] |
Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W., Park, J., Blackburn, E.H., Weissman, J.S., Qi, L.S., Huang, B., 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491.
|
[7] |
Chen, E., Huang, X., Tian, Z., Wing, R.A., Han, B., 2019. The genomics of Oryza species provides insights into rice domestication and heterosis. Annu Rev Plant Biol. 70, 639-665.
|
[8] |
Chen, G., Gong, D., Guo, X., Qiu, W., He, Q., 2005. Problems of the hybrid with Chongqing thermo-photo-sensitive male sterility wheat C49S in the plain of Jiang Han. Mailei Zuowu Xuebao 25, 147-148.
|
[9] |
Chen, X., Zhang, H., Sun, H., Luo, H., Zhao, L., Dong, Z., Yan, S., Zhao, C., Liu, R., Xu, C., Li, S., Chen, H., Jin, W., 2017. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol. 173, 307-325.
|
[10] |
Christensen, A.H., Quail, P.H., 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5, 213-218.
|
[11] |
Cigan, A.M., Singh, M., Benn, G., Feigenbutz, L., Kumar, M., Cho, M.J., Svitashev, S., Young, J., 2017. Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnol. 15, 379-389.
|
[12] |
Dang, Y., Jia, G., Choi, J., Ma, H., Anaya, E., Ye, C., Shankar, P., Wu, H., 2015. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 280-289.
|
[13] |
De Vries, A.P.H., 1971. Flowering biology of wheat, particularly in view of hybrid seed production - a review. Euphytica 20, 152-170.
|
[14] |
Duvick, D.N., 2001. Biotechnology in the 1930s: the development of hybrid maize. Nat. Rev. Genet. 2, 69-74.
|
[15] |
Driscoll, C.J., 1975. Cytogenetic analysis of two chromosomal male-sterility mutants in hexaploid wheat. Aust. J. Biol. Sci. 28, 413-416.
|
[16] |
Driscoll, C.J., 1977. Registration of Cornerstone male-sterile wheat germplasm. Crop Sci. 17, 190.
|
[17] |
Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., Zhu, J.K., 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229-1232.
|
[18] |
Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J.A., Han, F., 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J. Genet. Genomics 43, 37-43.
|
[19] |
Fossati, A., Ingold, M., 1970. A male sterile mutant in Triticum aestivum. Wheat Inform. Serv. 30, 8-10.
|
[20] |
Franckowiak, J.D., Maan, S.S., Williams, N.D., 1976. A proposal for hybrid wheat utilizing Aegilops squarrosa L. cytoplasm. Crop Science 16, 725-728.
|
[21] |
Geyer, M., Albrecht, T., Hartl, L., Mohlar, V., 2018. Exploring the genetics of fertility restoration controlled by Rf1 in common wheat (Triticum aestivum L.) using high-density linkage maps. Mol Genet. Genomics 293, 451-462.
|
[22] |
Hoagland, A.R., Elliott, F.C., Rasmussen, L.W., 1953. Some histological and morphological effects of maleic hydrazide on spring wheat. Agron. J 45, 468-472.
|
[23] |
Howells, R.M., Craze, M., Bowden, S., Wallington, E.J., 2018. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biol. 18, 215-225.
|
[24] |
Kihara, H., 1951. Substitution of nucleus and its effects on genome manifestations. Cytologia 16, 177-193.
|
[25] |
Klindworth, D.L., Williams, N.D., Maan, S.S., 2002. Chromosomal location of genetic male sterility genes in four mutants of hexaploid wheat. Crop Sci. 42, 1447-1450.
|
[26] |
Lawrenson, T., Shorinola, O., Stacey, N., Li, C., OEstergaard, L., Patron, N., Uauy, C., Harwood, W., 2015. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 16, 258-270.
|
[27] |
Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R., Gao, C., 2018. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59-67.
|
[28] |
Li, J., Li, Y., Ma, L., 2019. CRISPR/Cas9-Based Genome Editing and its Applications for Functional Genomic Analyses in Plants. Small Methods 3, 1800473-1800493.
|
[29] |
Liu, C.G., Wu, Y.W., Zhang, C.L., Ren, S.X., Zhang, Y., 1997. A preliminary study on the effects of Aegilops crassa 6x cytoplasm on the characters of common wheat. J Genet Genomics. 24, 241-247.
|
[30] |
Liu, C.G., Hou, N., Liu, G.Q., Wu, Y.W., Zhang, C.L., Zhang, Y., 2002. Studies on fertility genetic characters in D2-type CMS lines of common wheat. J Genet. Genomics. 29, 638-645.
|
[31] |
Liu, Z., Lin, S., Shi, J., Yu, J., Zhu, L., Yang, X., Zhang, D., Liang, W., 2017. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. Plant J 91, 263-277.
|
[32] |
Longin, C.F., Muhleisen, J., Maurer, H.P., Zhang, H., Gowda, M., Reif, J.C., 2012. Hybrid breeding in autogamous cereals. Theor. Appl. Genet. 125, 1087-1096.
|
[33] |
Murai, K., Tsunewaki, K., 1993. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67, 41-48.
|
[34] |
Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D., Kamoun, S., 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 31, 691-693.
|
[35] |
Pallotta, M.A., Warner, P., Kouidri, A., Tucker, E.J., Baes, M., Suchecki, R., Watson-Haigh, N., Okada, T., Garcia, M., Sandhu, A., Singh, M., Wolters, P., Albertsen, M.C., Cigan, A.M., Baumann, U., Whitford, R., 2019. Wheat ms5 male-sterility is induced by recessive homoeologous A and D genome non-specific lipid transfer protein. Plant J 99, 673-685.
|
[36] |
Perez-Prat, E., van Lookeren Campagne, M.M., 2002. Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci. 7, 199-203.
|
[37] |
Petersen, G., Seberg, O., Yde, M., Berthelsen, K., 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39, 70-82.
|
[38] |
Pickett, A.A., 1993. Hybrid wheat: results and problems. Adv. Plant Breeding Suppl. 15, 1-259.
|
[39] |
Pugsleay, T., Oram, R.N., 1959. Genic male sterility in wheat. Aust. Plant Breed Genet. Newsletter 14, 10-11.
|
[40] |
Sasakuma, T., Maan, S.S., Williams, N.D., 1978. EMS-induced male-sterile mutants in euplasmic and alloplasmic common wheat. Crop Sci. 18, 850-853.
|
[41] |
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., Gao, C., 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 31, 686-688.
|
[42] |
Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395-2410.
|
[43] |
Singh, S.K., Chatrath, R., Mishra, B., 2010. Perspective of hybrid wheat research: A review. Indian J Agr. Sci. 80, 1013-1027.
|
[44] |
Singh, M., Kumar, M., Albertsen, M.C., Young, J.K., Cigan, A.M., 2018. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol. Biol. 97, 371-383.
|
[45] |
Singh, M., Kumar, M., Thilges, K., Cho, M.J., Cigan, A.M., 2017. MS26/CYP704B is required for anther and pollen wall development in bread wheat (Triticum aestivum L.) and combining mutations in all three homeologs causes male sterility. PLoS One 12, e0177632.
|
[46] |
Tsunewaki, K., 1993. Genome-plasmon interaction in wheat. Jpn. J Genet. 68, 1-34.
|
[47] |
Tucker, E.J., Baumann, U., Kouidri, A., Suchecki, R., Baes, M., Garcia, M., Okada, T., Dong, C., Wu, Y., Sandhu, A., Singh, M., Langridge, P., Wolters, P., Albertsen, M.C., Cigan, A.M., Whitford, R., 2017. Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nat. Commun. 8, 869-878.
|
[48] |
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1-11.
|
[49] |
Vats, S., Kumawat, S., Kumar, V., Patil, G.B., Joshi, T., Sonah, H., Sharma, T.R., Deshmukh, R., 2019. Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells 8, 1386-1424.
|
[50] |
Voytas, D.F., Gao, C., 2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12, e1001877.
|
[51] |
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
|
[52] |
Wang, Z., Li, J., Chen, S., Heng, Y., Chen, Z., Yang, J., Zhou, K., Pei, J., He, H., Deng, X.W., Ma, L., 2017. Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc. Natl. Acad. Sci. USA. 114, 12614-12619.
|
[53] |
Whitford, R., Fleury, D., Reif, J.C., Garcia, M., Okada, T., Korzun, V., Langridge, P., 2013. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp. Bot. 64, 5411-5428.
|
[54] |
Wilson, J.A., Ross, W.M., 1962. Male sterility interaction of the Triticum aestivum nucleus and Triticum timopheevii cytoplasm. Wheat Inf. Serv. 14, 29-30.
|
[55] |
Wu, Y., Fox, T.W., Trimnell, M.R., Wang, L., Xu, R.J., Cigan, A.M., Huffman, G.A., Garnaat, C.W., Hershey, H., Albertsen, M.C., 2016. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol. J 14, 1046-1054.
|
[56] |
Xie, K., Minkenberg, B., Yang, Y., 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 112, 3570-3575.
|
[57] |
Yao, Q., Cong, L., Chang, J.L., Li, K.X., Yang, G.X., He, G.Y., 2006. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp. Bot. 57, 3737-3746.
|
[58] |
Zhang, D., Wu, S., An, X., Xie, K., Dong, Z., Zhou, Y., Xu, L., Fang, W., Liu, S., Liu, S., Zhu, T., Li, J., Rao, L., Zhao, J., Wan, X., 2018a. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol. J 16, 459-471.
|
[59] |
Zhang, F.T., 2005. Fertility transformation characteristics and restoration of photo-thermosensitive genic male sterile wheat. Master degree dissertation of the Chinese Academy of Agricultural Sciences, China.
|
[60] |
Zhang, S.J., Zhang, R.Z., Song, G.Q., Gao, J., Li, W., Han, X.D., Chen, M.L., Li, Y.L., Li, G.Y., 2018b. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol. 18, 302-313.
|
[61] |
Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., Tang, D., 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714-724.
|
[62] |
Zhang, Z., Hua, L., Gupta, A., Tricoli, D., Edwards, K.J., Yang, B., Li, W., 2019. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. 17, 1623-1635.
|
[63] |
Zhao, C., 2013. Research and application of hybrid wheat in China. Eng. Sci. 11, 19-21.
|
[64] |
Zhou, K., Wang, S., Feng, Y., Ji, W., Wang, G., 2008. A new male sterile mutant LZ in wheat (Triticum aestivum L.). Euphytica 159, 403-410.
|