[1] |
Araki, M., Ishii, T., 2015. Towards social acceptance of plant breeding by genome editing. Trends Plant Sci. 20, 145-149.
|
[2] |
Convention on Biological Diversity, 2000. Cartagena protocol on biosafety to the convention on biological diversity: text and annexes. Montreal, Canada. Secretariat of the Convention on Biological Diversity.
|
[3] |
Court of Justice of the European Union, 2018. PRESS RELEASE No 111/18: Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. Judgm. Case C-528/16.
|
[4] |
Endo, M., Mikami, M., Toki, S., 2015. Multigene knockout utilizing off-target mutations of the CRISPR/cas9 system in rice. Plant Cell Physiol. 56, 41-47.
|
[5] |
Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., Zeng, L., Liu, X., Zhu, J.K., 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 4632-4637.
|
[6] |
Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J.A., Han, F., 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J. Genet. Genomics. 43, 37-43.
|
[7] |
Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P., Xia, Q., 2015. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 87, 99-110.
|
[8] |
Gao, W., Xu, W.T., Huang, K.L., Guo, M. Z., Luo, Y.B., 2018. Risk analysis for genome editing-derived food safety in China. Food Control. 84, 128-137.
|
[9] |
Hiei, Y., Komari, T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824.
|
[10] |
Huang, K., 2017. Safety assessment of genetically modified foods. Springer Singapore.
|
[11] |
Ishizaki, T., 2016. CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation. Mol. Breed. 36, 165.
|
[12] |
ISAAA, 2019. Global status of commercialized biotech/GM crops in 2018: biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No. 54. ISAAA: Ithaca, NY.
|
[13] |
Jiang, W.Z., Yang, B., Weeks, D.P., 2014. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One. 9, e0099225.
|
[14] |
Jones, H.D., 2015. Regulatory uncertainty over genome editing. Nat. Plants. 1, 1-3.
|
[15] |
Kosicki, M., Tomberg, K., Bradley, A., 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771.
|
[16] |
Kuroha, T., Nagai, K., Gamuyao, R., Wang, D.R., Furuta, T., Nakamori, M., Kitaoka, T., Adachi, K., Minami, A., Mori, Y., Mashiguchi, K., Seto, Y., Yamaguchi, S., Kojima, M., Sakakibara, H., Wu, J., Ebana, K., Mitsuda, N., Ohme-Takagi, M., Yanagisawa, S., Yamasaki, M., Yokoyama, R., Nishitani, K., Mochizuki, T., Tamiya, G., McCouch, S.R., Ashikari, M., 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science. 361, 181-186.
|
[17] |
Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G., Li, H., 2016. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 7, 377.
|
[18] |
Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N.P., Fu, X., 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600.
|
[19] |
Li, X., Zhou, W., Ren, Y., Tian, X., Lv, T., Wang, Z., Fang, J., Chu, C., Yang, J. and Bu, Q., 2017. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J. Genet.Genomics. 44, 175-178.
|
[20] |
Liang, Z., Zhang, K., Chen, K., Gao, C., 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics. 41, 63-68.
|
[21] |
Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K., Chen, L.L., 2017. CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants. Mol Plant 10 (3), 530–532.
|
[22] |
Lusser, M., Parisi, C., Plan, D., Rodriguez-Cerezo, E., 2012. Deployment of new biotechnologies in plant breeding. Nat. Biotechnol. 30, 231-239.
|
[23] |
Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., Zhu, J.K., 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant. 6, 2008-2011.
|
[24] |
Mattei, T.A., 2018. The CRISPR-Cas9 Genome Editing System: Not as precise as previously believed. World Neurosurg. 118, 377-378.
|
[25] |
Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., Qu, L.J., 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233-1236.
|
[26] |
Murray, M.G., Thompson, W.F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4326.
|
[27] |
Peterson, B.A., Haak, D.C., Nishimura, M.T., Teixeira, P.J.P.L., James, S.R., Dangl, J.L., Nimchuk, Z.L., 2016. Genome-wide assessment of efficiency and specificity in crispr/cas9 mediated multiple site targeting in arabidopsis. PLoS One. 11, e0162169.
|
[28] |
Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H., Matsuoka, M., 2002. A mutant gibberellin-synthesis gene in rice. Nature. 416, 701-702.
|
[29] |
Schaeffer, S.M., Nakata, P.A., 2015. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Sci. 240, 130-142.
|
[30] |
Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395.
|
[31] |
Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., Zhang, D., Malzahn, A., Gong, Z., Qi, Y., Zhang, T., Zhang, Y., 2018. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 19, 84.
|
[32] |
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
|
[33] |
Wolt, J.D., 2017. Safety, security, and policy considerations for plant genome editing, in: Progress in Molecular Biology and Translational Science. 149, 215-241. Academic Press.
|
[34] |
Wolt, J.D., Wang, K., Sashital, D., Lawrence-Dill, C.J., 2016. Achieving plant CRISPR targeting that limits off-target effects. Plant Genome. 9, 1-8.
|
[35] |
Wolter, F., Puchta, H., 2017. Knocking out consumer concerns and regulator’s rules: Efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol. 18, 43.
|
[36] |
Wu, J. and Yin, H., 2019. Engineering guide RNA to reduce the off-target effects of CRISPR. J. Genet.Genomics. 46, 523-529.
|
[37] |
Xie, K., Minkenberg, B., Yang, Y., 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U. S. A. 112, 3570-3575.
|
[38] |
Xu, R.F., Li, H., Qin, R.Y., Li, J., Qiu, C.H., Yang, Y.C., Ma, H., Li, L., Wei, P.C., Yang, J.B., 2015. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, 11491.
|
[39] |
Zhang, Y., Massel, K., Godwin, I.D., Gao, C., 2018a. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210.
|
[40] |
Zhang, Q., Xing, H.L., Wang, Z.P., Zhang, H.Y., Yang, F., Wang, X.C., Chen, Q.J., 2018b. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol. Biol. 96, 445-456.
|
[41] |
Zhang, Hui, Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, Heng, Xu, N., Zhu, J.K., 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807.
|
[42] |
Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H., Yang, B., 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 42, 10903-10914.
|
[43] |
Zhu, C., Bortesi, L., Baysal, C., Twyman, R.M., Fischer, R., Capell, T., Schillberg, S., Christou, P., 2017. Characteristics of genome editing mutations in cereal crops. Trends Plant Sci. 22, 38-52.
|
[44] |
Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., Gao, C., 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440.
|